1
|
Li S, Duan L, Zhang H, Zhao Y, Li M, Jia Y, Gao Q, Yu H. Critical review on salt tolerance improvement and salt accumulation inhibition strategies of osmotic membrane bioreactors. BIORESOURCE TECHNOLOGY 2024; 406:130957. [PMID: 38876283 DOI: 10.1016/j.biortech.2024.130957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The osmotic membrane bioreactor (OMBR) is a novel wastewater treatment and resource recovery technology combining forward osmosis (FO) and membrane bioreactor. It has attracted attention for its low energy consumption and high contaminant removal performance. However, in the long-term operation, OMBR faces the problem of salt accumulation due to high salt rejection and reverse salt flux, which affects microbial activity and contaminants removal efficiency. This review analyzed the feasibility of screening salt-tolerant microorganisms and determining salinity thresholds to improve the salt tolerance of OMBR. Combined with recent research, the inhibition strategies for salt accumulation were reviewed, including the draw solution, FO membrane, operating conditions and coupling with other systems. It is hoped to provide a theoretical basis and practical guidance for the further development of OMBR. Finally, future research directions were prospected. This review provides new insights for achieving stable operation of OMBR and promotes its wide application.
Collapse
Affiliation(s)
- Shilong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Hengliang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yang Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Mingyue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yanyan Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Qiusheng Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
2
|
Cao DQ, Sun XZ, Zhang WY, Ji YT, Yang XX, Hao XD. News on alginate recovery by forward osmosis: Reverse solute diffusion is useful. CHEMOSPHERE 2021; 285:131483. [PMID: 34329149 DOI: 10.1016/j.chemosphere.2021.131483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The water content in the recycled alginate solutions from aerobic granular sludge was nearly 100%. Forward osmosis (FO) has become an innovative dewatering technology. In this study, the FO concentration of sodium alginate (SA) was investigated using calcium chloride as a draw solute. The reverse solute flux (RSF) of calcium ions in FO had a beneficial effect, contrary to the findings of previous literature. The properties of the concentrated substances formed on the FO membrane on the feed side were analyzed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, verifying that calcium alginate (Ca-Alg), which can be used as a recycled material, was formed on the FO membrane on the feed side owing to the interaction between SA and permeable calcium ions. Water flux increased significantly with the increase in calcium chloride concentration, while the concentration of SA had little influence on the water flux in FO. Based on this discovery, we propose a novel method for the concentration and recovery of alginate, in which the RSF of calcium ions is utilized for recovering Ca-Alg by FO, with calcium chloride as a draw solute.
Collapse
Affiliation(s)
- Da-Qi Cao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing, 100044, China.
| | - Xiu-Zhen Sun
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Wen-Yu Zhang
- Institute of Soil Environment and Pollution Remediation, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Yu-Ting Ji
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xiao-Xuan Yang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xiao-Di Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing, 100044, China.
| |
Collapse
|
3
|
Cong Nguyen N, Thi Nguyen H, Cong Duong H, Chen SS, Quang Le H, Cong Duong C, Thuy Trang L, Chen CK, Dan Nguyen P, Thanh Bui X, Guo W, Hao Ngo H. A breakthrough dynamic-osmotic membrane bioreactor/nanofiltration hybrid system for real municipal wastewater treatment and reuse. BIORESOURCE TECHNOLOGY 2021; 342:125930. [PMID: 34547711 DOI: 10.1016/j.biortech.2021.125930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
This study designed a Dynamic-Osmotic membrane bioreactor/nanofiltration (OsMBR/NF) system for municipal wastewater treatment and reuse. Results indicated that a continuously rotating FO module with 60 RPM in Dynamic-OsMBR system could enhance shear stress and reduce cake layer of foulants, leading to higher flux (50%) compared to Traditional-OsMBR during a 40-operation day. A negligible specific reverse salt flux (0.059 G/L) and a water flux of 2.86 LMH were recorded when a mixture of 0.1 M EDTA-2Na/0.1 M Na2CO3/0.9 mM Triton114 functioned as draw solution (DS). It was found that the Dynamic-OsMBR/NF hybrid system could effectively remove pollutants (∼98% COD, ∼99% PO43-P, ∼93% NH4+-N, > 99% suspended solids) from wastewater. In short, this developed system can be considered a breakthrough technology as it successfully minimizes membrane fouling by shear force, and achieves high water quality for reuse by two membrane- barriers.
Collapse
Affiliation(s)
| | - Hau Thi Nguyen
- Faculty of Chemistry and Environment, Dalat University, Dalat, Vietnam
| | | | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Chung -Hsiao E. Rd, Taipei 106, Taiwan, Republic of China
| | - Huy Quang Le
- Faculty of Chemistry and Environment, Dalat University, Dalat, Vietnam; Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Chung -Hsiao E. Rd, Taipei 106, Taiwan, Republic of China
| | - Chinh Cong Duong
- Southern Institute of Water Resources Research, Ho Chi Ming City, Vietnam
| | - Le Thuy Trang
- Faculty of Environmental and Natural Sciences, Duy Tan University, Vietnam
| | - Chih-Kuei Chen
- Department of Environmental Engineering, National I-Lan University, I-Lan 26047, Taiwan
| | - Phuoc Dan Nguyen
- Centre de Asiatique de Recherche sur l'Eau, Ho Chi Minh City University of Technology-National University-HCM, Vietnam
| | - Xuan Thanh Bui
- Vietnam National University, Ho Chi Minh City, Vietnam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney, Broadway, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney, Broadway, NSW 2007, Australia.
| |
Collapse
|
4
|
Akther N, Kawabata Y, Lim S, Yoshioka T, Phuntsho S, Matsuyama H, Shon HK. Effect of graphene oxide quantum dots on the interfacial polymerization of a thin-film nanocomposite forward osmosis membrane: An experimental and molecular dynamics study. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Nawaz MS, Son HS, Jin Y, Kim Y, Soukane S, Al-Hajji MA, Abu-Ghdaib M, Ghaffour N. Investigation of flux stability and fouling mechanism during simultaneous treatment of different produced water streams using forward osmosis and membrane distillation. WATER RESEARCH 2021; 198:117157. [PMID: 33933919 DOI: 10.1016/j.watres.2021.117157] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/11/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Forward osmosis-membrane distillation (FO-MD) hybrids were recently found suitable for produced water treatment. Exclusion of synthetic chemical draw solutions, typically used for FO, can reduce FO-MD operational costs and ease its onsite application. This study experimentally validates a novel concept for the simultaneous treatment of different produced water streams available at the same industrial site using an FO-MD hybrid system. The water oil separator outlet (WO) stream was selected as FO draw solution and it generated average fluxes ranging between 8.30 LMH and 26.78 LMH with four different feed streams. FO fluxes were found to be governed by the complex composition of the feed streams. On the other hand, with WO stream as MD feed, an average flux of 14.41 LMH was achieved. Calcium ions were found as a main reason for MD flux decline in the form of CaSO4 scaling and stimulating the interaction between the membrane and humic acid molecules to form scale layer causing reduction in heat transfer and decline in MD flux (6%). Emulsified oil solution was responsible for partial pore clogging resulting in further 2% flux decline. Ethylenediaminetetraaceticacid (EDTA) was able to mask a portion of calcium ions and resulted in a complete recovery of the original MD flux. Under hybrid FO-MD experiments MD fluxes between 5.62 LMH and 11.12 LMH were achieved. Therefore, the novel concept is validated to produce fairly stable FO and MD fluxes, with few streams, without severe fouling and producing excellent product water quality.
Collapse
Affiliation(s)
- Muhammad Saqib Nawaz
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Hyuk Soo Son
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Yong Jin
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Youngjin Kim
- Department of Environmental Engineering, Sejong Campus, Korea University, 2511, Sejong-ro, Jochiwon-eup, Sejong-si, Republic of Korea
| | - Sofiane Soukane
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Mohammed Ali Al-Hajji
- Energy Systems Division, Process & Control Systems Department (P&CSD), Saudi Aramco, Dhahran, Saudi Arabia
| | - Muhannad Abu-Ghdaib
- Energy Systems Division, Process & Control Systems Department (P&CSD), Saudi Aramco, Dhahran, Saudi Arabia
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
6
|
Beldie AA, Moraru CI. Forward osmosis concentration of milk: Product quality and processing considerations. J Dairy Sci 2021; 104:7522-7533. [PMID: 33865601 DOI: 10.3168/jds.2020-20019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/28/2021] [Indexed: 11/19/2022]
Abstract
Concentration of milk in the dairy industry is typically achieved by thermal evaporation or reverse osmosis (RO). Heat concentration is energy intensive and leads to cooked flavor and color changes in the final product, and RO is affected by fouling, which limits the final achievable concentration of the product. The main objective of this work was to evaluate forward osmosis (FO) as an alternative method for concentrating milk. The effects of fat content and temperature on the process were evaluated, and the physicochemical properties and sensory qualities of the final product were assessed. Commercially pasteurized skim and whole milk samples were concentrated at 4, 15, and 25°C using a benchtop FO unit. The FO process was assessed by monitoring water flux and product concentration. The color of the milk concentrates was also evaluated. A sensory panel compared the FO concentrated and thermally concentrated milks, diluted to single strength, with high temperature, short time pasteurized milk. The FO experimental runs were conducted in triplicate, and data were analyzed by single-factor ANOVA. Water flux during FO decreased with time under all processing conditions. Higher temperatures led to faster concentration and higher concentration factors for both skim and whole milk. After 5.75 h of FO processing, the concentration factors achieved for skim milk were 2.68 ± 0.08 at 25°C, 2.68 ± 0.09 at 15°C, and 2.36 ± 0.08 at 4°C. For whole milk, after 5.75 h of FO processing, concentration factors of 2.32 ± 0.12 at 25°C, 2.12 ± 0.36 at 15°C, and 1.91 ± 0.15 at 4°C were obtained. Overall, maximum concentration levels of 40.15% total solids for skim milk and 40.94% total solids for whole milk were achieved. Additionally, a triangle sensory test showed no significant differences between regular milk and FO concentrated milk diluted to single strength. This work shows that FO is a viable nonthermal processing method for concentrating milk, but some technical challenges need to be overcome to facilitate commercial utilization.
Collapse
Affiliation(s)
| | - Carmen I Moraru
- Department of Food Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
7
|
Xu Z, Song X, Xie M, Wang Y, Huda N, Li G, Luo W. Effects of surfactant addition to draw solution on the performance of osmotic membrane bioreactor. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Duc Viet N, Im SJ, Jang A. Characterization and control of membrane fouling during dewatering of activated sludge using a thin film composite forward osmosis membrane. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122736. [PMID: 32361625 DOI: 10.1016/j.jhazmat.2020.122736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the feasibility of applying a thin film composite (TFC) forward osmosis (FO) membrane in the dewatering of activated sludge (AS). Membrane fouling was investigated and controlled to enhance the system's performance. Investigations showed that the TFC FO membrane provided a water flux that was 120 % higher and a concentration factor that was three times higher compared to a cellulose tri-acetate (CTA) membrane. The foulant layer on the TFC membrane surface was mostly irreversible when 1.44 mg-C/cm2 and 0.13 mg-C/cm2 dissolved organic carbon (DOC) were extracted in sodium hydroxide (NaOH) and deionized (DI) water, respectively. The results of principle component analysis (PCA) revealed that among the operating conditions, the amount of aromatic organic compounds (indicated by UV254 values) followed by their hydrophilicity (specific ultraviolet absorbance (SUVA) indices) were the dominant factors controlling the different fouling potentials. SUVA value indices ranged from 0.4 to 0.6 L/m-mg DOC, illustrating that hydrophilic compounds were more responsible for membrane fouling than hydrophobic components. These results implied that aromatic and hydrophilic substances, in particular protein and polysaccharides were key components of the fouling layers, which need to be considered to enable a reduction of membrane fouling. We thus employed several novel fouling control methods, in which the combination of mono-chloramine pre-treatment and membrane cleaning by NaOH resulted in the recovery up to 86 % of the water from raw AS.
Collapse
Affiliation(s)
- Nguyen Duc Viet
- Graduate School of Water Resources, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sung-Ju Im
- Graduate School of Water Resources, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
9
|
Pathak N, Phuntsho S, Tran VH, Johir MAH, Ghaffour N, Leiknes T, Fujioka T, Shon HK. Simultaneous nitrification-denitrification using baffled osmotic membrane bioreactor-microfiltration hybrid system at different oxic-anoxic conditions for wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 253:109685. [PMID: 31654928 DOI: 10.1016/j.jenvman.2019.109685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 09/17/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
The efficacy of a baffled osmotic membrane bioreactor-microfiltration (OMBR-MF) hybrid system equipped with thin film forward osmosis membrane for wastewater treatment was evaluated at laboratory scale. The novel OMBR-MF hybrid system involved baffles, that separate oxic and anoxic zones in the aerobic reactor for simultaneous nitrification and denitrification (SND), and a bioreactor comprised of thin film composite-forward osmosis (TFC-FO) and polyether sulfone-microfiltration (PES-MF) membranes. The evaluation was conducted under four different oxic-anoxic cycle patterns. Changes in flux, salinity build-up, and microbial activity (e.g., extracellular polymeric substances (EPS) were assessed. Over the course of a 34 d test, the OMBR-MF hybrid system achieved high removal of total organic carbon (TOC) (86-92%), total nitrogen (TN) (63-76%), and PO4-P (57-63%). The oxic-anoxic cycle time of 0.5-1.5 h was identified to be the best operating condition. Incorporation of MF membrane effectively alleviated salinity build-up in the reactor, allowing stable system operation.
Collapse
Affiliation(s)
- Nirenkumar Pathak
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Post Box 129, Broadway, NSW, 2007, Australia
| | - Sherub Phuntsho
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Post Box 129, Broadway, NSW, 2007, Australia.
| | - Van Huy Tran
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Post Box 129, Broadway, NSW, 2007, Australia
| | - M A H Johir
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Post Box 129, Broadway, NSW, 2007, Australia
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - TorOve Leiknes
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Takahiro Fujioka
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Ho Kyong Shon
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Post Box 129, Broadway, NSW, 2007, Australia.
| |
Collapse
|
10
|
Akther N, Lim S, Tran VH, Phuntsho S, Yang Y, Bae TH, Ghaffour N, Shon HK. The effect of Schiff base network on the separation performance of thin film nanocomposite forward osmosis membranes. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.02.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|