1
|
He D, Zhu T, Sun J, Pan X, Li J, Luo H. Emerging organic contaminants in sewage sludge: Current status, technological challenges and regulatory perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177234. [PMID: 39471937 DOI: 10.1016/j.scitotenv.2024.177234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Sewage sludge is the source and sink of pollutants. It accumulates a large number of organic contaminants such as endocrine disrupting compounds (EDCs), persistent organic pollutants (POPs), microplastics (MPs) and pharmaceuticals and personal care products (PPCPs), thus posing threats to the ecological environment and human health. The harmlessness of sludge provides the possibility to realize the recycling of resources. In this study, the VOSviewer software is used to visualize published papers related to organic contaminants in sewage sludge. The sources and hazards of emerging pollutants in sewage sludge are outlined, as well as the current state of research on composting, hydrothermal treatment, electrochemical technology, and advanced oxidation processes applied to this area. Key challenges facing this field include the low mineralization rate of contaminants, the ecological risks posed by degradation products, reasonableness of regulations, and effectiveness of enforcement. In conclusion, the integration of existing removal technologies, exploration of degradation pathways, and toxicity assessment of degradation products are the key to achieving the harmlessness and resource utilization of sewage sludge. Additionally, it is also necessary to strengthen the international consensus on the prevention and control of emerging organic contaminants in sewage sludge, improve regulatory frameworks, enhance law enforcement, and implement comprehensive management strategies.
Collapse
Affiliation(s)
- Dongqin He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312085, China
| | - Tingting Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hongwei Luo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312085, China.
| |
Collapse
|
2
|
Sutar AA, Rotte VM. A novel test set up to study three-dimensional electrokinetic dewatering of dredged soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122611. [PMID: 39326082 DOI: 10.1016/j.jenvman.2024.122611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
The dredged soil obtained from maintenance activities of water bodies has emerged as a potential alternate fill material for infrastructure development. However, dredged soil requires stabilization due to high initial water content, low shear strength and high compressibility. Among several methods, stabilization of dredged soil by using electrokinetics is one of the effective ground improvement techniques that uses electric field to dewater and strengthen the soil. In this context, a series of experiments were conducted on dredged soil by using a combination of electrokinetic treatment with and without 6 kPa seating pressure (viz., low surcharge). A customized and patented electrokinetic dewatering (EKD) test set up was used for the three-dimensional electrokinetic treatment of soil. The potential difference (in the range of 6 V-48 V) within the soil was achieved by inserting stainless steel pipes of 21.4 mm outer diameter, 1.2 mm thickness, and 170 mm length. Two control tests (with and without seating pressure of 6 kPa) also were performed to understand the effectiveness of EKD. From the study, up to 1057% and 427% increase in dewatering was noted in EKD tests due to application of 24 V (optimum voltage noted in EKD tests) as compared to control tests, without and with seating pressure, respectively. Further, seating pressure with EKD resulted in effective control of crack formation in the dredged soil and uniform improvement in shear strength along the depth (up to 95 kPa). The combination of low surcharge with EKD, adopted in the study, is also expected to yield lower differential settlement, and hence better performance of geotechnical structures built on improved dredged soil. The novel 3-dimensional patented EKD test setup with Arduino-programmed automatic water pumping enables collecting and accurately measuring dewatered effluent volume, performing cone penetration tests on undisturbed soil, and collecting soil samples for determination of water content/physiochemical properties from different locations. Overall, the developed EKD setup can be utilized for evaluating the effectiveness and adopting real-time progress management for EKD or other ground improvement methods, and remediation of sludge, mine tailings, dredged sediments, and contaminated soils.
Collapse
Affiliation(s)
- Abhishek A Sutar
- Department of Civil Engineering, Institute of Infrastructure, Technology, Research and Management, Ahmedabad, 380026, India.
| | - Veerabhadra M Rotte
- Department of Civil Engineering, Institute of Infrastructure, Technology, Research and Management, Ahmedabad, 380026, India.
| |
Collapse
|
3
|
Maraschin M, de Paula N, Carissimi E. Enhancing sludge thickening in continuous treatment using polymeric bubbles with cationic polymer P2900 and cocamidopropyl betaine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58609-58623. [PMID: 39316215 DOI: 10.1007/s11356-024-35100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Sludge thickening is a fundamental stage of treatment. This study investigated the application, in continuous treatment, of polymeric bubbles produced with cationic polymer P2900 and cocamidopropyl betaine (CAPB), a zwitterionic surfactant. The proposed reagent combination aims to form aerated flakes, solid waste structures, and rapidly rising air bubbles, ideal for treatments in compact units. Using this combination, it was possible to achieve a total solids concentration of 45% with the modified bubbles and 25% with the conventional water treatment. This level of thickening occurred under the following operating conditions: initial total solids (TS) concentration of 10 g L-1, a flow rate of 5 L min-1, saturation pressure (psat) of 3 atm, and polymer dosage of 10 mg (gTS)-1. The suggested mechanism of action involves the adhesion of P2900 molecules to CAPB at the air/water interface, forming a lining on the bubble surface. Additionally, polymerized species form due to the residual aluminum (Al) in the sludge, which would occur during flocculation in the helical tubular flocculator (HTF), adsorbing the micelles and bubbles of CAPB. The critical micellar concentration (CMC) of CAPB was 0.26 mmol L-1. Polymeric bubble technology can provide an efficient and cost-effective approach to sludge thickening in continuous treatment.
Collapse
Affiliation(s)
- Manoel Maraschin
- Department of Sanitation and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, Rio Grande Do Sul, 97105-900, Brazil.
| | - Nátalie de Paula
- Department of Sanitation and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, Rio Grande Do Sul, 97105-900, Brazil
| | - Elvis Carissimi
- Department of Sanitation and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, Rio Grande Do Sul, 97105-900, Brazil
| |
Collapse
|
4
|
Dong Y, Yuan H, Ge D, Zhu N. A novel conditioning approach for amelioration of sludge dewaterability using activated carbon strengthening electrochemical oxidation and realized mechanism. WATER RESEARCH 2022; 220:118704. [PMID: 35667172 DOI: 10.1016/j.watres.2022.118704] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/07/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Sludge dewatering is an essential process for reduction of sludge volume to decrease cost of ultimate disposal. In this study, a novel method using activated carbon (AC) strengthening electrochemical (EC) treatment (EC/AC) was adopted to improve greatly sludge dewaterability. It was shown that capillary suction time (CST) and water content of dewatered sludge cake (Wc) were reduced to 55.9 ± 1.24 s and 64.3 ± 1.23%, respectively, under the optimal conditions of EC voltage 20 V, EC time 30 min and 0.2 g/g dry solid (DS) AC. AC with rich functional groups as "the third electrode" intensified electrooxidation by forming multiple microelectrodes and electron transfer capacity and conductivity of sludge were strengthened by AC in EC system, which were illustrated by electrochemical analysis. It could be found that zeta potential and particle size were increased and surface roughness was reduced after EC/AC treatment intensifying sludge hydrophobicity. Form the results of rheological behaviors of sludge, flowability was strengthened and viscosity was weakened under the conditioning of EC/AC. Besides, colloidal force and gel-like network strength were lessened, which was also verified by organic matters and percentage of inviable cells. At the same time, intracellular matters were released and degraded and bound water was released converting into free water. In addition, sludge compressibility and structural strength were increased and porous structure was formed facilitating water outflow via addition of mesoporous AC as skeleton builder, which eventually led to an improved separation efficiency of solid-water and sludge dewaterability. The results of heavy metals suggested that sludge cake after EC/AC treatment was favorable for land application.
Collapse
Affiliation(s)
- Yanting Dong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiping Yuan
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongdong Ge
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Halocarbon Emissions from Hazardous Waste Landfills: Analysis of Sources and Risks. ATMOSPHERE 2020. [DOI: 10.3390/atmos11040375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Landfills are sources of fugitive volatile organic carbon (VOC) emissions, including halocarbons. The objective of this study was to evaluate the contribution of halogenated VOCs to the health risks associated with the exposure of workers operating in landfills, gathering information on the role of endogenous/exogenous sources present in anthropized areas. A hazardous waste landfill located in Turin, Italy was used as a case study. Ambient concentrations of 10 pollutants (BTEX, styrene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, 1,2-dichloroethane, and 1,2-dichloropropane), measured in 10 points of the landfill area, were considered and analyzed. The data had a monthly frequency and covered two years. A cumulative health risk analysis was conducted by applying a Monte-Carlo method. The results showed that the contribution of 1,2-dichloroethane and 1,2-dichloropropane was 17.9% and 19.4% for the total risk and hazard index respectively. Benzene and ethylbenzene gave the highest contribution to the total risk (56.8% and 24.8%, respectively). In the second phase of the study, waste typologies that are possibly responsible for halocarbon emissions were investigated. Halocarbon concentration trends and waste disposal records were compared. Although further investigation is needed, some waste typologies were not excluded to contribute to halocarbon emissions, in particular sludge coming from wastewater treatment plants.
Collapse
|
6
|
Acosta-Santoyo G, Raschitor A, Bustos E, Llanos J, Cañizares P, Rodrigo MA. Electrochemically assisted dewatering for the removal of oxyfluorfen from a coagulation/flocculation sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 258:110015. [PMID: 31929057 DOI: 10.1016/j.jenvman.2019.110015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
This work focuses on the evaluation of the electrochemical dewatering of sludge obtained in the coagulation of wastes polluted with oxyfluorfen. To do this, sludge samples were treated, aiming not only to reduce the sludge volume, but also to facilitate the degradation of oxyfluorfen contained in the cake via electrolysis with a boron-doped diamond anode. Results show that water can be effectively recovered through three sequential stages. First, a gravity-driven stage, that can recover around 60% of initial volume and where no oxyfluorfen is dragged. Then, a second stage that involves the application of pressure and which accounts for the recuperation of an additional 25% of the total volume of the water removed and in which oxyfluorfen also remained in the cake. Finally, an electrochemical stage, which involves the application of electricity with increasing electric fields (1.0, 2.0, 4.0, and 16.0 V cm-1), accounting for the recovery of the rest of water released and where an electrolytic degradation of oxyfluorfen is obtained, whose extension depends on the electrode configuration used in the electro-dewatering cell. This electrode configuration also influences the retention or loss of oxyfluorfen from the cake, being the optimum choice the placement of the cathode downstream, next to the outlet of the dewatering cell.
Collapse
Affiliation(s)
- Gustavo Acosta-Santoyo
- Department of Chemical Engineering, Universidad de Castilla - La Mancha, Enrique Costa Building, Campus Universitario s/n, 13071, Ciudad Real, Spain; Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro s/n, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - Alexandra Raschitor
- Department of Chemical Engineering, Universidad de Castilla - La Mancha, Enrique Costa Building, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - Erika Bustos
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro s/n, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - Javier Llanos
- Department of Chemical Engineering, Universidad de Castilla - La Mancha, Enrique Costa Building, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - Pablo Cañizares
- Department of Chemical Engineering, Universidad de Castilla - La Mancha, Enrique Costa Building, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - Manuel Andrés Rodrigo
- Department of Chemical Engineering, Universidad de Castilla - La Mancha, Enrique Costa Building, Campus Universitario s/n, 13071, Ciudad Real, Spain.
| |
Collapse
|