1
|
Yang Z, Jiang L, Yang H, Chang H, Wan Y, Yu H, Rong H, Qu F. Anaerobic membrane distillation bioreactors for saline organic wastewater treatment: Impacts of salt accumulation on methanogenesis and microbial community. WATER RESEARCH 2025; 281:123695. [PMID: 40311351 DOI: 10.1016/j.watres.2025.123695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/10/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025]
Abstract
Anaerobic membrane distillation bioreactor (AnMDBR), which possesses several distinctive advantages such as high-quality water production, desalination and methanogenesis, shows enormous potential in saline organic wastewater (SAOW) treatment. However, salt accumulation in the reactor may deactivate anaerobic organisms and impede methanogenesis. In this work, effects of salt accumulation were comprehensively investigated regarding pollutant removal performance and methanogenesis in AnMDBRs over a 30-d operation. The investigative influent salinity was in the range of 0.0-2.0 %. The results demonstrated that AnMDBR achieved excellent chemical oxygen demand (COD) rejection (> 97 %) in the stabilization phase regardless of influent salinity. Moreover, the methane production was as high as 267 mL/gCOD, when the influent salinity did not exceed 1.0 %. When the influent salinity increased to 2.0 %, the methane production was significantly restricted, because salt stress altered the microbial community, resulting in a more sensitive and fragile ecosystem. Thermophilic and halophilic bacteria genera (Bacillus and Caproiciproducens) were selectively enriched in AnMDBR, promoting short-chain fatty acids generation. Meanwhile, these bacteria severely suppressed methanogenic archaea Methanosarcina, leading to an 80 % reduction in species abundance compared to a robust reactor. Furthermore, the salt stress inactivated key enzymes (mtr and mcr), disrupting methanogenic metabolism.
Collapse
Affiliation(s)
- Zhimeng Yang
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China
| | - Linjiang Jiang
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China
| | - Haiyang Yang
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China.
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Yuxuan Wan
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China
| | - Huarong Yu
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China
| | - Hongwei Rong
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China
| | - Fangshu Qu
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
2
|
Patel RV, Yadav A, Shahi VK. Advances in membrane distillation for wastewater treatment: Innovations, challenges, and sustainable opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178749. [PMID: 40022985 DOI: 10.1016/j.scitotenv.2025.178749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 03/04/2025]
Abstract
Water pollution and the growing demand for zero liquid discharge solutions have driven the development of advanced wastewater treatment technologies. Membrane distillation (MD) is a promising thermal-based process capable of treating high-salinity brines and wastewater. This review provides an in-depth analysis of MD configurations, operating principles, and membrane characteristics while addressing key challenges such as fouling and pore wetting which hinder large-scale implementation. To overcome these limitations, various membrane fabrication and modification strategies, including physical and chemical approaches, have been explored. The integration of MD with other processes (hybrid MD) for wastewater treatment is also examined. A comprehensive discussion on the mechanisms of organic, inorganic, and biological fouling and their impact on MD performance is presented. Additionally, recent advancements in antifouling strategies, including surface modifications, novel materials, and operational optimizations, are reviewed. Furthermore, the review critically analyzes membrane wetting, its governing mechanisms, and mitigation techniques. By summarizing the current challenges and future prospects, this work provides valuable insights into improving MD performance for practical applications. The findings serve as a foundation for further research and technological advancements in the field of wastewater treatment using MD.
Collapse
Affiliation(s)
- Raj Vardhan Patel
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Anshul Yadav
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, India; Department of Water Resources Development and Management, Indian Institute of Technology Roorkee, 247667, India.
| | - Vinod Kumar Shahi
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, India; Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, 247667, India.
| |
Collapse
|
3
|
Salinas-García MÁ, Fernbach J, Rinnan R, Priemé A. Extreme smells-microbial production of volatile organic compounds at the limits of life. FEMS Microbiol Rev 2025; 49:fuaf004. [PMID: 39880796 PMCID: PMC11837334 DOI: 10.1093/femsre/fuaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 01/31/2025] Open
Abstract
Microbial volatile organic compounds (MVOCs) are diverse molecules produced by microorganisms, ranging from mere waste byproducts to important signalling molecules. While the interest in MVOCs has been increasing steadily, there is a significant gap in our knowledge of MVOCs in extreme environments with e.g. extreme temperatures or acidity. Microorganisms in these conditions are subjected to additional stress compared to their counterparts in moderate environments and in many cases have evolved unique adaptations, including the production of specialized MVOCs. This review highlights the diversity of MVOCs identified in extreme environments or produced by isolated extremophiles. Furthermore, we explore potential applications already investigated and discuss broader implications for biotechnology, environmental biology, and astrobiology.
Collapse
Affiliation(s)
- Miguel Ángel Salinas-García
- Centre for Exolife Sciences (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5, DK-1350 Copenhagen, Denmark
- Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Jonas Fernbach
- Centre for Exolife Sciences (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5, DK-1350 Copenhagen, Denmark
| | - Riikka Rinnan
- Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Anders Priemé
- Centre for Exolife Sciences (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5, DK-1350 Copenhagen, Denmark
- Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
4
|
Han J, Xie N, Ju J, Zhang Y, Wang Y, Kang W. Developments of electrospinning technology in membrane bioreactor: A review. CHEMOSPHERE 2024; 364:143091. [PMID: 39151583 DOI: 10.1016/j.chemosphere.2024.143091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The necessity for effective wastewater treatment and purification has grown as a result of the increasing pollution issues brought on by industrial and municipal wastewater. Membrane bioreactor (MBR) technology stands out when compared to other treatment methods because of its high efficiency, environmental friendliness, small footprint, and ease of maintenance. However, the development and application of membrane bioreactors has been severely constrained by the higher cost and shorter service life of these devices brought on by membrane biofouling issues resulting from contaminants and bacteria in the water. The nanoscale size of the electrospinning products provides unique microstructure, and the technology facilitates the production of structurally different membranes, or the modification and functionalization of membranes, which makes it possible to solve the membrane fouling problem. Therefore, many current studies have attempted to use electrospinning in MBRs to address membrane fouling and ultimately improve treatment efficacy. Meanwhile, in addition to solving the problem of membrane fouling, the fabrication technology of electrospinning also shows great advantages in constructing thin porous fiber membrane materials with controllable surface wettability and layered structure, which is helpful for the performance enhancement of MBR and expanding innovation. This paper systematically reviews the application and research progress of electrospinning in MBRs. Firstly, the current status of the application of electrospinning technology in various MBRs is introduced, and the relevant measures to solve the membrane fouling based on electrospinning technology are analyzed. Subsequently, some new types of MBRs and new application areas developed with the help of electrospinning technology are introduced. Finally, the limitations and challenges of merging the two technologies are presented, and pertinent recommendations are provided for future research on the use of electrospinning technology in membrane bioreactors.
Collapse
Affiliation(s)
- Jiacheng Han
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Nan Xie
- ChinaTianjin Research Institute of Construction Machinery, No.91 Huashi Road, Beichen Technology Park, Tianjin, 300409, PR China
| | - Jingge Ju
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China.
| | - Yan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Yongcheng Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China.
| |
Collapse
|
5
|
Anaerobic Membrane Bioreactor (AnMBR) for the Removal of Dyes from Water and Wastewater: Progress, Challenges, and Future Perspectives. Processes (Basel) 2023. [DOI: 10.3390/pr11030855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The presence of dyes in aquatic environments can have harmful effects on aquatic life, including inhibiting photosynthesis, decreasing dissolved oxygen levels, and altering the behavior and reproductive patterns of aquatic organisms. In the initial phase of this review study, our aim was to examine the categories and properties of dyes as well as the impact of their toxicity on aquatic environments. Azo, phthalocyanine, and xanthene are among the most frequently utilized dyes, almost 70–80% of used dyes, in industrial processes and have been identified as some of the most commonly occurring dyes in water bodies. Apart from that, the toxicity effects of dyes on aquatic ecosystems were discussed. Toxicity testing relies heavily on two key measures: the LC50 (half-lethal concentration) and EC50 (half-maximal effective concentration). In a recent study, microalgae exposed to Congo Red displayed a minimum EC50 of 4.8 mg/L, while fish exposed to Disperse Yellow 7 exhibited a minimum LC50 of 0.01 mg/L. Anaerobic membrane bioreactors (AnMBRs) are a promising method for removing dyes from water bodies. In the second stage of the study, the effectiveness of different AnMBRs in removing dyes was evaluated. Hybrid AnMBRs and AnMBRs with innovative designs have shown the capacity to eliminate dyes completely, reaching up to 100%. Proteobacteria, Firmicutes, and Bacteroidetes were found to be the dominant bacterial phyla in AnMBRs applied for dye treatment. However, fouling has been identified as a significant drawback of AnMBRs, and innovative designs and techniques are required to address this issue in the future.
Collapse
|
6
|
Silva AFR, Lebron YAR, Moreira VR, Ribeiro LA, Koch K, Amaral MCS. High-retention membrane bioreactors for sugarcane vinasse treatment: Opportunities for environmental impact reduction and wastewater valorization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117001. [PMID: 36565496 DOI: 10.1016/j.jenvman.2022.117001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Ethanol production has increased over the years, and Brazil ranking second in the world using sugarcane as the main raw material. However, 10-15 L of vinasse are generated per liter of ethanol produced. Besides large volumes, this wastewater has high polluting potential due to its low pH and high concentrations of organic matter and nutrients. Given the high biodegradability of the organic matter, the treatment of this effluent by anaerobic digestion and membrane separation processes results in the generation of high value-added byproducts such as volatile fatty acids (VFAs), biohydrogen and biogas. Membrane bioreactors have been widely evaluated due to the high efficiency achieved in vinasse treatment. In recent years, high retention membrane bioreactors, in which high retention membranes (nanofiltration, reverse osmosis, forward osmosis and membrane distillation) are combined with biological processes, have gained increasing attention. This paper presents a critical review focused on high retention membrane bioreactors and the challenges associated with the proposed configurations. For nanofiltration membrane bioreactor (NF-MBR), the main drawback is the higher fouling propensity due to the hydraulic driving force. Nonetheless, the development of membranes with high permeability and anti-fouling properties is uprising. Regarding osmotic membrane bioreactor (OMBR), special attention is needed for the selection of a proper draw solution, which desirably should be low cost, have high osmolality, reduce reverse salt flux, and can be easily reconcentrated. Membrane distillation bioreactor (MDBR) also exhibit some shortcomings, with emphasis on energy demand, that can be solved with the use of low-grade and residual heat, or renewable energies. Among the configurations, MDBR seems to be more advantageous for sugarcane vinasse treatment due to the lower energy consumption provided by the use of waste heat from the effluent, and due to the VFAs recovery, which has high added value.
Collapse
Affiliation(s)
- A F R Silva
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Y A R Lebron
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - V R Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - L A Ribeiro
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - K Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany
| | - M C S Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
7
|
El Nemr A, Hassaan MA, Elkatory MR, Ragab S, El-Nemr MA, Tedone L, De Mastro G, Pantaleo A. Enhancement of biogas production from individually or co-digested green algae Cheatomorpha linum using ultrasound and ozonation treated biochar. ULTRASONICS SONOCHEMISTRY 2022; 90:106197. [PMID: 36242791 PMCID: PMC9568882 DOI: 10.1016/j.ultsonch.2022.106197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
This paper proposes the use of modified biochar, derived from Sawdust (SD) biomass using sonication (SSDB) and Ozonation (OSDB) processes, as an additive for biogas production from green algae Cheatomorpha linum (C. linum) either individually or co-digested with natural diet for rotifer culture (S. parkel). Brunauer-Emmett-Teller (BET), Fourier-Transform Infrared (FTIR), thermal-gravimetric (TGA), and X-ray diffraction (XRD) analyses were used to characterize the generated biochar. Ultrasound (US) specific energy, dose, intensity and dissolved ozone (O3) concentration were also calculated. FTIR analyses proved the capability of US and ozonation treatment of biochar to enhance the biogas production process. The kinetic model proposed fits successfully with the data of the experimental work and the modified Gompertz models that had the maximum R2 value of 0.993 for 150 mg/L of OSDB. The results of this work confirmed the significant impact of US and ozonation processes on the use of biochar as an additive in biogas production. The highest biogas outputs 1059 mL/g VS and 1054 mL/g VS) were achieved when 50 mg of SSDB and 150 mg of OSDB were added to C. linum co-digested with S. parkle.
Collapse
Affiliation(s)
- Ahmed El Nemr
- National Institute of Oceanography and Fisheries (NIOF), Marine Pollution Department, Environment Division, Alexandria 21556, Egypt.
| | - Mohamed Aly Hassaan
- National Institute of Oceanography and Fisheries (NIOF), Marine Pollution Department, Environment Division, Alexandria 21556, Egypt.
| | - Marwa Ramadan Elkatory
- Advanced Technology and New Materials Research Institute, City for Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Safaa Ragab
- National Institute of Oceanography and Fisheries (NIOF), Marine Pollution Department, Environment Division, Alexandria 21556, Egypt
| | - Mohamed Ahmed El-Nemr
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Minia 61519, Egypt
| | - Luigi Tedone
- Bari University, Department of Agriculture and Environmental Sciences, Bari 70121, Italy.
| | - Guisepe De Mastro
- Bari University, Department of Agriculture and Environmental Sciences, Bari 70121, Italy.
| | - Antonio Pantaleo
- Bari University, Department of Agriculture and Environmental Sciences, Bari 70121, Italy.
| |
Collapse
|
8
|
Zhang S, Vanessa C, Khan A, Ali N, Malik S, Shah S, Bilal M, Yang Y, Akhter MS, Iqbal HMN. Prospecting cellulose fibre-reinforced composite membranes for sustainable remediation and mitigation of emerging contaminants. CHEMOSPHERE 2022; 305:135291. [PMID: 35760128 DOI: 10.1016/j.chemosphere.2022.135291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Many environmental pollutants caused by uncontrolled urbanization and rapid industrial growth have provoked serious concerns worldwide. These pollutants, including toxic metals, dyes, pharmaceuticals, pesticides, volatile organic compounds, and petroleum hydrocarbons, unenviably compromise the water quality and manifest a severe menace to aquatic entities and human beings. Therefore, it is of utmost importance to acquaint bio-nanocomposites with the capability to remove and decontaminate this extensive range of emerging pollutants. Recently, considerable emphasis has been devoted to developing low-cost novel materials obtained from natural resources accompanied by minimal toxicity to the environment. One such component is cellulose, naturally the most abundant organic polymer found in nature. Given bio-renewable sources, natural abundance, and impressive nanofibril arrangement, cellulose-reinforced composites are widely engineered and utilized for multiple applications, such as wastewater decontamination, energy storage devices, drug delivery systems, paper and pulp industries, construction industries, and adhesives, etc. Environmental remediation prospective is among the fascinating application of these cellulose-reinforced composites. This review discusses the structural attributes of cellulose, types of cellulose fibrils-based nano-biocomposites, preparatory techniques, and the potential of cellulose-based composites to remediate a diverse array of organic and inorganic pollutants in wastewater.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - ChansaKayeye Vanessa
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Sumeet Malik
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Sumaira Shah
- Department of Botany, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Yong Yang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico.
| |
Collapse
|
9
|
Pervez MN, Mahboubi A, Uwineza C, Zarra T, Belgiorno V, Naddeo V, Taherzadeh MJ. Factors influencing pressure-driven membrane-assisted volatile fatty acids recovery and purification-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152993. [PMID: 35026250 DOI: 10.1016/j.scitotenv.2022.152993] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Volatile fatty acids (VFAs) are building block chemicals that can be produced through bioconversion of organic waste streams via anaerobic digestion as intermediate products. Purified VFAs are applicable in a wide range of industrial applications such as food, textiles, cosmetics, pharmaceuticals etc. production. The present review focuses on VFAs recovery methods and technologies such as adsorption, distillation, extraction, gas stripping, esterification and membrane based techniques etc., while presenting a discussion of their pros and cons. Moreover, a great attention has been given to the recovery of VFAs through membrane filtration as a promising sustainable clarification, fractionation and concentration approach. In this regard, a thorough overview of factors affecting membrane filtration performance for VFAs recovery has been presented. Filtration techniques such as nanofiltration and reverse osmosis have shown to be capable of recovering over 90% of VFAs content from organic effluent steams, proving the direct effect of membrane materials/surface chemistry, pore size and solution pH in recovery success level. Overall, this review presents a new insight into challenges and potentials of membrane filtration for VFAs recovery based on the effects of factors such as operational parameters, membrane properties and effluent characteristics.
Collapse
Affiliation(s)
- Md Nahid Pervez
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Clarisse Uwineza
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | | |
Collapse
|
10
|
Manzoor K, Khan SJ, Khan A, Abbasi H, Zaman WQ. Woven-fiber microfiltration coupled with anaerobic forward osmosis membrane bioreactor treating textile wastewater: Use of fertilizer draw solutes for direct fertigation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Pandey AK, Pilli S, Bhunia P, Tyagi RD, Surampalli RY, Zhang TC, Kim SH, Pandey A. Dark fermentation: Production and utilization of volatile fatty acid from different wastes- A review. CHEMOSPHERE 2022; 288:132444. [PMID: 34626658 DOI: 10.1016/j.chemosphere.2021.132444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Volatile fatty acids (VFAs) are the building blocks of the chemical industry, and they are the primary contributors to the planet's organic carbon cycle. VFA production from fossil fuels (mostly petroleum) is unsustainable, pollutes the environment, and generates greenhouse gases. As a result of these issues, there is a pressing need to develop alternate sources for the long-term generation of VFAs via anaerobic digestion. The accessible feedstocks for its sustainable production, as well as the influencing parameters, are discussed in this review. The use of VFAs as a raw material to make a variety of consumer products is reviewed in order to find a solution. It also bridges the gap between traditional and advanced VFA production and utilization methods from a variety of solid and liquid waste sources for economical stability.
Collapse
Affiliation(s)
- Ashutosh Kumar Pandey
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - S Pilli
- Department of Civil Engineering, National Institute of Technology, Warangal, 506004, Telangana, India.
| | - P Bhunia
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, 752050, India
| | - R D Tyagi
- INRS Eau, Terre, Environnement, 490, rue de la Couronne, Québec, G1K 9A9, Canada
| | - Rao Y Surampalli
- Global Institute for Energy, Environment and Sustainability, Kansas, USA
| | - Tian C Zhang
- Department of Civil & Environmental Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, NE, 68182-0178, USA
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| |
Collapse
|
12
|
Liu L, Liu W, Yu L, Dong J, Han F, Hu D, Chen Z, Ge H, Jiang B, Wang H, Cui Y, Zhang W, Zou X, Zhang Y. Optimizing anaerobic technology by using electrochemistry and membrane module for treating pesticide wastewater: Chemical oxygen demand components and fractions distribution, membrane fouling, effluent toxicity and economic analysis. BIORESOURCE TECHNOLOGY 2022; 346:126608. [PMID: 34954355 DOI: 10.1016/j.biortech.2021.126608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Optimization in performance and membrane fouling of an electrochemical anaerobic membrane bioreactor (R1) for treating pesticide wastewater was investigated and compared with a conventional anaerobic membrane bioreactor (R2). The maximum COD removal efficiency of R2 was 80.1%, 80.0%, 67.4%, 61.1% with HRT of 96, 72, 48 and 24 h, which of R1 was enhanced to 84.7%, 84.3%, 82.0% and 66.3%. These results demonstrated that the optimum HRT of R1 was shortened to 48 h, which of R2 required 72 h. R1 reduced the contents of particulate and colloidal COD, and the fraction of COD converted to sludge was 5.0-8.2% lower than that of R2. The fouling rate was 0.99-1.44 kPa/d and reduced by 31.0%-38.5% compared with R2. Detoxification was enhanced by 7.8-47.7% with the assistance of bio-electrochemistry. Ultimately, ensuring similar performance, R1 achieved a 65.6% improvement in environmental benefit, a 26.3% and 38.9% reduction in unit capital and operating costs.
Collapse
Affiliation(s)
- Lixue Liu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Wenyu Liu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Liqiang Yu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Jian Dong
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Fei Han
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Dongxue Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Zhaobo Chen
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China.
| | - Hui Ge
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Bei Jiang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Hongcheng Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Yubo Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Wanjun Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Xuejun Zou
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Ying Zhang
- School of Resources and Environmental Science, Northeast Agricultural University, 59 Mucai Street, HarBin 150030, PR China
| |
Collapse
|
13
|
Diaby AT, Byrne P, Loulergue P, Sow O, Maré T. Experimental Study of a Heat Pump for Simultaneous Cooling and Desalination by Membrane Distillation. MEMBRANES 2021; 11:membranes11100725. [PMID: 34677491 PMCID: PMC8537058 DOI: 10.3390/membranes11100725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/22/2022]
Abstract
Heat pump systems can simultaneously produce cooling energy for space cooling in hotels, office and residential buildings and heat for desalination using membrane distillation (MD). The MD technique uses a heat input at a temperature compatible with the levels of heat pump condensers (<60 °C). A heat pump prototype coupled with an air-gap membrane distillation unit was constructed and tested. This paper presents the experimental study on a lab-scale prototype and details the two operating modes “continuous” and “controlled” simulating an air conditioning system and a food storage, respectively. The experimental results enable to analyze the performance of the prototype and the physical phenomena involved. Finally, the study shows that this system could be a promising solution to help supplying freshwater to people in hot regions of the world.
Collapse
Affiliation(s)
- Ahmadou Tidiane Diaby
- Laboratoire du froid, des systèmes énergétiques et thermiques (Lafset), Cnam—Hesam Université, 292 rue Saint Martin, 75003 Paris, France;
- Laboratoire de Génie Civil et de Génie Mécanique, Université de Rennes, F-35000 Rennes, France; (P.B.); (T.M.)
| | - Paul Byrne
- Laboratoire de Génie Civil et de Génie Mécanique, Université de Rennes, F-35000 Rennes, France; (P.B.); (T.M.)
| | - Patrick Loulergue
- Univ Rennes, CNRS, ISCR–UMR 6226, F-35000 Rennes, France
- Correspondence:
| | - Ousmane Sow
- Laboratoire Eau, Energie, Environnement et Procédés Industriels—Ecole Supérieure Polytechnique (ESP)-Université Cheikh Anta Diop, Dakar 10700, Senegal;
| | - Thierry Maré
- Laboratoire de Génie Civil et de Génie Mécanique, Université de Rennes, F-35000 Rennes, France; (P.B.); (T.M.)
| |
Collapse
|
14
|
Lü F, Wang Z, Zhang H, Shao L, He P. Anaerobic digestion of organic waste: Recovery of value-added and inhibitory compounds from liquid fraction of digestate. BIORESOURCE TECHNOLOGY 2021; 333:125196. [PMID: 33901909 DOI: 10.1016/j.biortech.2021.125196] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion, as an eco-friendly waste treatment technology, is facing the problem of low stability and low product value. Harvesting value-added products beyond methane and removing the inhibitory compounds will unleash new vitality of anaerobic digestion, which need to be achieved by selective separation of certain compounds. Various methods are reviewed in this study for separating valuable products (volatile fatty acids, medium-chain carboxylic acids, lactic acid) and inhibitory substance (ammonia) from the liquid fraction of digestate, including their performance, applicability, corresponding limitations and roadmaps for improvement. In-situ extraction that allows simultaneous production and extraction is seen as promising approach which carries good potential to overcome the barriers for continuous production. The prospects and challenges of the future development are further analyzed based on in-situ extraction and economics.
Collapse
Affiliation(s)
- Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Zhijie Wang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China.
| |
Collapse
|
15
|
Kwon D, Bae W, Kim J. Hybrid forward osmosis/membrane distillation integrated with anaerobic fluidized bed bioreactor for advanced wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124160. [PMID: 33049631 DOI: 10.1016/j.jhazmat.2020.124160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Forward osmosis (FO)-membrane distillation (MD) process was integrated with anaerobic fluidized bed bioreactor (AFBR) to advance wastewater treatment. Low removal efficiency of nutrients such as ammonia nitrogen was improved significantly by combining FO-MD process with AFBR. The MD membrane was applied to concentrate the draw solution (DS) which can be diluted by FO filtration. By using 1 M of NaCl as DS, about 80% of ammonia nitrogen was further removed by the FO membrane while the phosphorous was removed almost completely (99%). However, the accumulation of ammonia nitrogen in DS and the reverse salt flux through the FO membrane was unavoidable. Nevertheless, combining MD membrane produced excellent removal efficiency yielding only 4 and 5.6 mg/L of ammonia nitrogen and chemical oxygen demand (COD) in MD permeate, respectively at 15 ℃ of transmembrane temperature. Alternatively, there is the possibility that the FO-MD process can be superior to concentrate resources such as nitrogen and phosphorous present in AFBR. The reverse salt flux from DS into AFBR bulk suspension did not show adverse effects on the performances of bioreactor with respect to COD removal efficiency, conductivity and methane production during operational period. Deposit of the fouling layer on FO membrane was also observed, but the fouling on MD membrane was not severe probably because crystallization rate could be retarded by diluting the DS during FO filtration.
Collapse
Affiliation(s)
- Daeeun Kwon
- Department of Environmental Engineering, Inha University, Inharo-100, Michuhol-gu, Incheon 22201, Republic of Korea
| | - Woobin Bae
- Department of Environmental Engineering, Inha University, Inharo-100, Michuhol-gu, Incheon 22201, Republic of Korea
| | - Jeonghwan Kim
- Department of Environmental Engineering, Inha University, Inharo-100, Michuhol-gu, Incheon 22201, Republic of Korea.
| |
Collapse
|
16
|
Duong CC, Chen SS, Le HQ, Chang HM, Nguyen NC, Cao DTN, Chien IC. A novel thermophilic anaerobic granular sludge membrane distillation bioreactor for wastewater reclamation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41751-41763. [PMID: 32700271 DOI: 10.1007/s11356-020-09987-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Membrane distillation (MD) has a high heat requirement. Integrating MD with thermophilic bioreactors could remedy this problem. A laboratory-scale thermophilic anaerobic granular sludge membrane distillation bioreactor (ThAGS-MDBR) was used to treat wastewater with a high organic loading rate (OLR). Waste heat from ThAGS was used directly for the MD process to reduce energy consumption. The result demonstrated that the ThAGS-MDBR system achieved a high-efficiency removal of chemical oxygen demand (more 99.5%) and NH4+-N (96.4%). Furthermore, the highest methane production from the proposed system was 332 mL/g CODremoved at OLR of 16 kg COD/m3/day. Specifically, an aggregate of densely packed diverse microbial communities in anaerobic granular sludge was the main mechanism for the enhancement of bioreactor tolerance with environmental changes. High-quality distillate water from ThAGS-MDBR was reclaimed in one step with total organic carbon less than 1.7 mg/L and electrical conductivity less than 120 μS/cm. Furthermore, the result of the DNA extraction kit recorded that Methanosaeta thermophila was a critical archaea for high COD removal and bioreactor stability.
Collapse
Affiliation(s)
- Chinh Cong Duong
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd., Taipei, 10608, Taiwan
- Southern Institute of Water Resources Research, 658 Vo Van Kiet Street, District 5, Ho Chi Minh City, 700000, Vietnam
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd., Taipei, 10608, Taiwan.
| | - Huy Quang Le
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd., Taipei, 10608, Taiwan
- Faculty of Chemistry and Environment, Dalat University, 01 Phu Dong Thien Vuong Street, Da Lat City, 66000, Vietnam
| | - Hau-Ming Chang
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd., Taipei, 10608, Taiwan
| | - Nguyen Cong Nguyen
- Faculty of Chemistry and Environment, Dalat University, 01 Phu Dong Thien Vuong Street, Da Lat City, 66000, Vietnam
| | - Dan Thanh Ngoc Cao
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd., Taipei, 10608, Taiwan
| | - I-Chieh Chien
- Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City, Taiwan
| |
Collapse
|
17
|
Khiter A, Balannec B, Szymczyk A, Arous O, Nasrallah N, Loulergue P. Behavior of volatile compounds in membrane distillation: The case of carboxylic acids. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Liang J, Zhang P, Cai Y, Wang Q, Zhou Z. Thermal effects. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1406-1411. [PMID: 32291829 DOI: 10.1002/wer.1337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
This review paper focuses on the researches published in 2019 in the field of thermal effects in wastewater and solid waste treatment. The content of this review paper includes five parts: wastewater and sludge treatment, nutrient removal and recovery, membrane technology, heavy metal removal and immobilization, and organic waste utilization. © 2020 Water Environment Federation PRACTITIONER POINTS: Thermal effect plays an important role in treatment of wastewater and sewage sludge. Recovery of nitrogen and phosphorus from wastewater and sewage sludge reduces environmental pollution and offers new products. Temperature improves removal and recovery of heavy metals and organic wastes.
Collapse
Affiliation(s)
- Jinsong Liang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, China
| | - Panyue Zhang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, China
| | - Yajing Cai
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, China
| | - Qingyan Wang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, China
| | - Zeyan Zhou
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, China
| |
Collapse
|
19
|
Srivastava RK, Shetti NP, Reddy KR, Aminabhavi TM. Sustainable energy from waste organic matters via efficient microbial processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137927. [PMID: 32208271 DOI: 10.1016/j.scitotenv.2020.137927] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/22/2020] [Accepted: 03/12/2020] [Indexed: 05/06/2023]
Abstract
This review emphasizes utilization of waste organic matters from water bodies and soil sources for sustainable energy development. These organic waste matters (including microplastics) from a variety of environmental sources have created a big challenge to utilize them for energy development for human needs, maintaining a cleaner environment and thereby, producing useful bioproducts (sustainable bioenergy or other primary metabolites). Anaerobic digestions as well as other effective wastewater treatment approaches are discussed. From the water bodies, waste organic matter reduction can be achieved by a reduction of chemical oxygen demand and biological oxygen demand after the waste treatment. Other forms of organic waste matter are available in the form of agro wastes or residues (stalk of wheat or rice, maize, corn etc.) due to crop cultivation, which are generally burnt into ashes. Such wastes can be utilized for bioenergy energy production, which would help for the reduction of climate changes or other toxic gases. Hydrogen, bioelectricity, ethanol, butanol, methane and algal diesel or other types of fuel sources would help to provide sustainable source of bioenergy that can be produced from these wastes via degradation by the biological processes. This review will discuss in depths about the sustainable nature of organic matters to produce clean energy via application of efficient biological methods to maintain a clean environment, thereby providing alternative options to fossil energy fuels.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, Gitam Institute of Technology and Management (Deemed to be University), A.P. 530045, India
| | - Nagaraj P Shetti
- Center for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi 580030, Karnataka, India.
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tejraj M Aminabhavi
- Pharmaceutical Engineering, SET's College of Pharmacy, Dharwad 580 002, Karnataka, India.
| |
Collapse
|
20
|
Naidu G, Tijing L, Johir M, Shon H, Vigneswaran S. Hybrid membrane distillation: Resource, nutrient and energy recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117832] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Gryta M. The Application of Submerged Modules for Membrane Distillation. MEMBRANES 2020; 10:membranes10020025. [PMID: 32041326 PMCID: PMC7073728 DOI: 10.3390/membranes10020025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 11/22/2022]
Abstract
This paper deals with the efficiency of capillary modules without an external housing, which were used as submerged modules in the membrane distillation process. The commercial hydrophobic capillary membranes fabricated for the microfiltration process were applied. Several constructional variants of submerged modules were discussed. The influence of membrane arrangement, packing density, capillary diameter and length on the module performance was determined. The effect of process conditions, i.e., velocity and temperature of the streams, on the permeate flux was also evaluated. The submerged modules were located in the feed tank or in the distillate tank. It was found that much higher values of the permeate flux were obtained when the membranes were immersed in the feed with the distillate flowing inside the capillary membranes. The efficiency of submerged modules was additionally compared with the conventional membrane distillation (MD) capillary modules and a similar performance of both constructions was achieved.
Collapse
Affiliation(s)
- Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
| |
Collapse
|
22
|
Permeate Flux and Rejection Behavior in Submerged Direct Contact Membrane Distillation Process Treating a Low-Strength Synthetic Wastewater. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10020677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of operational conditions such as permeate recirculation velocity, mixing intensity, and trans-membrane temperature on the performances of hydrophobic polyethylene (PE) hollow-fiber membrane were investigated by operating the submerged direct contact membrane distillation (SDCMD) process treating a synthetic low-strength wastewater. Permeate flux of the membrane increased with increasing a permeate recirculation velocity through the fiber lumen. However, the effectiveness was less pronounced as the velocity was higher than 0.5 m/s. Increasing rotational speed to 600 rpm, which can lead to mixing intensity from a bulk wastewater toward hollow-fiber membrane, enhanced permeate flux. Feed temperature played a more significant role in enhancing permeate flux rather than a permeate temperature under constant trans-membrane temperature. The SDCMD process treating a synthetic low-strength wastewater achieved an excellent rejection efficiency which is higher than 97.8% for both chemical oxygen demand (CODCr) and total phosphorus (T-P) due to the hydrophobic property of membrane material which can allow water vapor through membrane. However, the rejection efficiency of the ammonia nitrogen (NH3-N) was relatively low at about 87.5% because ammonia gas could be volatized easily through membrane pores in SDCMD operation. In a long-term operation of the SDCMD process, the permeate flux decreased significantly due to progressive formation of inorganic scaling on membrane.
Collapse
|