1
|
Nowińska K, Adamczyk Z. Zinc and Lead Metallurgical Slags as a Potential Source of Metal Recovery: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7295. [PMID: 38068037 PMCID: PMC10707075 DOI: 10.3390/ma16237295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 04/28/2025]
Abstract
This article presents the mineralogical and chemical characteristics of zinc and lead smelting slags, with particular reference to the slags formed during the simultaneous production of Zn and Pb by the Imperial Smelting Process. These slags, because of the presence of many metals in their composition, mainly in the form of crystalline phases, are a valuable source for their extraction. Slags from Zn-Pb metallurgy are processed on an industrial scale using pyrometallurgical and hydrometallurgical methods, alongside which a number of experiments conducted to recover metals as efficiently as possible, including bioleaching experiments.
Collapse
Affiliation(s)
- Katarzyna Nowińska
- Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, ul. Akademicka 2, 44-100 Gliwice, Poland;
| | | |
Collapse
|
2
|
Xu DM, Fu RB. The mechanistic insights into the leaching behaviors of potentially toxic elements from the indigenous zinc smelting slags under the slag dumping site scenario. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129368. [PMID: 35897171 DOI: 10.1016/j.jhazmat.2022.129368] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Since lager quantities of the zinc (Zn) smelting slags were traditionally dumped at the indigenous Zn smelting sites, the release characterization of potentially toxic elements (PTEs) from the Zn smelting slags under various environmental conditions were of great significance for an environmental risk analysis. The acidification of the Zn smelting slags to pH= 4 and 6 would result in the leaching concentrations of Cd and Mn exceeding the fourth-class standard of surface water quality standard in China (GB3838-2002). Notably, most metals exhibited an amphoteric leaching pattern, where the highest leached concentrations of As, Cd, Cu, Mn, Pb, and Zn were 4.15, 4.21, 140.0, 78.1, 156.9 and 477.0 mg/L, respectively. In addition, the highest release of toxic metals within 96 h reached 0.17 % of As, 3.50 % of Cd, 2.77 % of Cu, 6.92 % of Mn, 0.13 % of Pb, and 2.57 % of Zn, respectively. The combined results of various characterization techniques suggested that the PTEs remobilization effected by rhizosphere-like organic acids were mainly controlled by the precipitation of newly formed Fe, Mn and Al (hydr) oxides and the complexation of organic ligands. The present study results could provide valuable insights into the long-term leaching behaviors of PTEs from the Zn smelting slags to reduce ecological hazard.
Collapse
Affiliation(s)
- Da-Mao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Rong-Bing Fu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Bioleaching and Selective Precipitation for Metal Recovery from Basic Oxygen Furnace Slag. Processes (Basel) 2022. [DOI: 10.3390/pr10030576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Decreasing ore grades and an increasing consumption of metals has led to a shortage of important primary raw materials. Therefore, the urban mining of different deposits and anthropogenic stocks is of increasing interest. Basic oxygen furnace (BOF) slag is produced in huge quantities with the so-called Linz-Donawitz process and contains up to 5.2, 0.9, 0.1, and 0.07% of Mn, Al, Cr, and V, respectively. In the present study, sulfur-oxidizing Acidithiobacillus thiooxidans and iron- and sulfur-oxidizing Acidithiobacillus ferridurans were applied in batch and stirred tank experiments to investigate the biological extraction of metals from BOF slag. In the batch experiments, up to 96.6, 52.8, 41.6, and 29.3% of Cr, Al, Mn, and V, respectively, were recovered. The stirred tank experiments, with increasing slag concentrations from 10 to 75 g/L, resulted in higher extraction efficiencies for A. ferridurans and lower acid consumption. Selective metal precipitation was performed at pH values ranging between 2.5 and 5.0 to study the recovery of Mn, Al, Cr, and V from the biolixiviant. Selective precipitation of V and Cr was achieved at pH 4.0 from A. thiooxidans biolixiviant, while Fe and V could be selectively recovered from A. ferridurans biolixiviant at pH 3.0. This work revealed the potential of BOF slag as an artificial ore for urban mining and demonstrated that combining bioleaching and selective precipitation is an effective method for sustainable metal recovery.
Collapse
|
4
|
Abstract
Waste copper slag is a typical hazardous solid waste containing a variety of valuable elements and has not been effectively disposed of so far. In this paper, a stepwise extraction process was proposed to recover valuable elements (copper, iron, lead and zinc) from waste copper slag. The specific procedures are as follows: (1) A flotation process was adopted to enrich copper, and when the copper grade in the flotation concentrate was 21.50%, the copper recovery rate was 77.78%. (2) The flotation tailings were pelletized with limestone, then the green pellets were reduced, and the magnetic separation process was carried out. When the iron and copper grades in the magnetic concentrate were 90.21% Fe and 0.4% Cu, 91.34% iron and 83.41% copper were recovered, respectively. (3) Non-magnetic tailings were mixed with clinker and standard sand to produce common Portland cement. Several products were obtained from the waste copper slag through the proposed process: flotation concentrate, measured 21.50% Cu; magnetic concentrate, containing 90.21% TFe and 0.4% Cu; direct reduction dust, including 65.17% ZnO and 2.66% PbO; common Portland cement for building construction. The comprehensive utilization method for waste copper slag achieved zero tailing and has great potential for practical application.
Collapse
|
5
|
Bioleaching of Iron, Copper, Lead, and Zinc from the Sludge Mining Sediment at Different Particle Sizes, pH, and Pulp Density Using Acidithiobacillus ferrooxidans. MINERALS 2020. [DOI: 10.3390/min10111013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Globally, the amounts of metal ore deposits have been declining, so the research directions investigating the extraction of metals from materials that are classified as waste are gaining more importance every year. High concentrations of Cu, Pb, Zn, and Fe were analyzed in the sludge sediment (Zlaté Hory, Czech Republic), which is a waste product of the mining industry. In the bioleaching process, bacterial cells have been established as being able to convert metals from solid to liquid phase. However, the most important parameters of bioleaching are particle size, pH, and pulp density, thus our research focused on their optimization. The acidophilic and mesophilic bacteria Acidithiobacillus ferrooxidans were applied due to the high Fe content in the sample. The recovery of metals in the leachate was determined by F-AAS and the residual metal concentrations in the waste fraction were analyzed by XRF. The grain size fractions <40 µm –200 µm were investigated. The atomic absorption spectrometry (AAS) results show that the highest Fe (76.48%), Cu (82.01%), and Pb (88.90%) recoveries were obtained at particle size of 71–100 μm. Zn was dissolved for all fractions above 90%. Experiments with different pH values were performed at a pH of 1.6–2.0. The highest dissolution rates of Zn, Fe, and Cu were achieved with a suspension pH of 1.8, where 98.73% of Zn, 85.42% of Fe, and 96.44% of Cu were recovered. Due to the high percentage dissolution of metals, experiments were performed under pilot conditions in a bioreactor at a pulp density of 2.5% and 4.2% (w/v). From an economic point of view, the leaching time of 28 days was evaluated as sufficient.
Collapse
|
6
|
Efficiency of Chemical and Biological Leaching of Copper Slag for the Recovery of Metals and Valorisation of the Leach Residue as Raw Material in Cement Production. MINERALS 2020. [DOI: 10.3390/min10080654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Copper slags produced in vast quantities in smelting operations could be considered as secondary material sources instead of stockpiling them in landfills. This study investigates the recovery of valuable metals from copper slag and the valorisation of the leach residue as construction material in line with the principles of a circular economy. By taking into account that the environmental characterization of the as-received copper slag did not allow its disposal in landfills without prior treatment, chemical and biological leaching were tested for the recovery of metals. Pre-treatment with acids, namely HNO3 and H2SO4, resulted in the extraction of several target metals and the production of an almost inert waste. Despite the clearly better oxidative conditions prevailing in the bioleaching reactors, chemical leaching resulted in the higher dissolution of Cu (71% vs. 51%), Co (70% vs. 36%), and Zn (65% vs. 44%). The acid consumption was much lower during the bioleaching experiments compared to the chemical leaching. The bioleach residue was suitable for its use as supplementary cementitious material, showing a better performance than the reference sample without causing any detrimental effects to the calcium aluminate cement (CAC) quality. The complete valorisation of copper slags is expected to improve the economics of the process, by avoiding landfill costs and producing saleable products with high added value.
Collapse
|
7
|
Comparison of Three Approaches for Bioleaching of Rare Earth Elements from Bauxite. MINERALS 2020. [DOI: 10.3390/min10080649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Approximately 300 million tonnes of bauxite are processed annually, primarily to extract alumina, and can contain moderate rare earth element (REE) concentrations, which are critical to a green energy future. Three bioleaching techniques (organic acid, reductive and oxidative) were tested on three karst bauxites using either Aspergillus sp. (organic acid bioleaching) or Acidithiobacillus ferrooxidans (reductive and oxidative bioleaching). Recovery was highest in relation to middle REE (generally Nd to Gd), with maximum recovery of individual REE between 26.2% and 62.8%, depending on the bauxite sample. REE recovery occurred at low pH (generally < 3), as a result of organic acids produced by Aspergillus sp. or sulphuric acid present in A. ferrooxidans growth media. Acid production was seen when A. ferrooxidans was present. However, a clear increase in REE recovery in the presence of A. ferrooxidans (compared to the control) was only seen with one bauxite sample (clay-rich) and only under oxidative conditions. The complex and varied nature of REE-bearing minerals in bauxite provides multiple targets for bioleaching, and although the majority of recoverable REE can be leached by organic and inorganic acids, there is potential for enhanced recovery by bioleaching.
Collapse
|
8
|
Prospective (Bio)leaching of Historical Copper Slags as an Alternative to Their Disposal. MINERALS 2019. [DOI: 10.3390/min9090542] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of this study was to evaluate the feasibility of (bio)hydrometallurgical methods for metal extraction from historical copper slags. Two types of slags (amorphous slag—AS, and crystalline slag—CS) were subjected to 24 to 48 h of leaching with: (i) Sulfuric acid at 0.1, 0.5, and 1 M concentrations at 1%, 5%, and 10% pulp densities (PDs); and (ii) normality equivalent (2 N) acids (sulfuric, hydrochloric, nitric, citric, and oxalic) at pulp densities ranging from 1% to 2%. Bioleaching experiments were performed within 21 days with Acidithiobacillus thiooxidans accompanied by an abiotic control (sterile growth medium). The results demonstrated that the most efficient treatment for amorphous and crystalline slag was bioleaching at 1% PD over 21 days, which led to extraction of Cu at rates of 98.7% and 52.1% for AS and CS, respectively. Among the chemical agents, hydrochloric acid was the most efficient and enabled 30.5% of Cu to be extracted from CS (1% PD, 48 h) and 98.8% of Cu to be extracted from AS (1% PD, 24 h). Slag residues after leaching were characterized by strong alteration features demonstrated by the complete dissolution of fayalite in the case of CS and the transformation of AS to amorphous silica and secondary gypsum. Based on this study, we conclude that amorphous slag is a more suitable candidate for potential metal recovery because of its generally high susceptibility to leaching and due to the generation of residue significantly depleted in metals as the end product. The inventory of economically relevant metals showed that 1 ton of historical copper slag contains metals valued at $47 and $135 for crystalline and amorphous slag, respectively, suggesting that secondary processing of such materials can potentially be both economically and environmentally viable.
Collapse
|
9
|
Yang L, Zhao D, Yang J, Wang W, Chen P, Zhang S, Yan L. Acidithiobacillus thiooxidans and its potential application. Appl Microbiol Biotechnol 2019; 103:7819-7833. [PMID: 31463545 DOI: 10.1007/s00253-019-10098-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 11/26/2022]
Abstract
Acidithiobacillus thiooxidans (A. thiooxidans) is a widespread, mesophilic, obligately aerobic, extremely acidophilic, rod-shaped, and chemolithoautotrophic gram-negative gammaproteobacterium. It can obtain energy and electrons from the oxidation of reducible sulfur, and it can fix carbon dioxide and assimilate nitrate, nitrite, and ammonium to satisfy carbon and nitrogen requirement. This bacterium exists as different genomovars and its genome size range from 3.02 to 3.97 Mb. Here, we highlight the recent advances in the understanding of the general biological features of A. thiooxidans, as well as the genetic diversity and the sulfur oxidation pathway system. Additionally, the potential applications of A. thiooxidans were summarized including the recycling of metals from metal-bearing ores, electric wastes, and sludge, the improvement of alkali-salinity soils, and the removal of sulfur from sulfur-containing solids and gases.
Collapse
Affiliation(s)
- Lei Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Jian Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, People's Republic of China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| |
Collapse
|