1
|
Hamrouni R, Regus F, Farnet Da Silva AM, Orsiere T, Boudenne JL, Laffont-Schwob I, Christen P, Dupuy N. Current status and future trends of microbial and nematode-based biopesticides for biocontrol of crop pathogens. Crit Rev Biotechnol 2025; 45:333-352. [PMID: 38987982 DOI: 10.1080/07388551.2024.2370370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/29/2023] [Accepted: 05/26/2024] [Indexed: 07/12/2024]
Abstract
The increasing public demand to avoid the use of synthetic pesticides and fertilizers in agricultural production systems, causing serious environmental damages, has challenged industry to develop new and effective solutions to manage and control phytopathogens. Biopesticides, particularly microbial-based biopesticides, are a promising new alternative with high biodegradability, specificity, suitability for incorporation into integrated pest management practices, low likelihood of resistance development, and practically no known human health risks. However: expensive production methods, narrow action spectra, susceptibility to environmental conditions, short shelf life, poor storage stability, legislation registry constraints, and general lack of knowledge are slowing down their adoption. In addition to regulatory framework revisions and improved training initiatives, improved preservation methods, thoughtfully designed formulations, and field test validations are needed to offer new microbial- and nematode-based biopesticides with improved efficacy and increased shelf-life. During the last several years, substantial advancements in biopesticide production have been developed. The novelty part of this review written in 2023 is to summarize (i) mechanisms of action of beneficial microorganisms used to increase crop performance and (ii) successful formulation including commercial products for the biological control of phytopathogens based on microorganisms, nematode and/or metabolites.
Collapse
Affiliation(s)
- Rayhane Hamrouni
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
- Aix Marseille Univ, CNRS, LCE UMR 7376, 13331, Marseille, France
| | - Flor Regus
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
- Aix Marseille Univ, IRD, LPED, Marseille, France
| | | | - Thierry Orsiere
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | | | | | - Pierre Christen
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Nathalie Dupuy
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| |
Collapse
|
2
|
Yuliana T, Fauziah A, Mardawati E, Marta H, Safitri R, Krama A. Laccase Characterization from Ganoderma lucidum Grown in Pineapple and Coffee Waste Substrates under Solid Fermentation. Pak J Biol Sci 2025; 28:16-26. [PMID: 39820564 DOI: 10.3923/pjbs.2025.16.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
<b>Background and Objective:</b> Laccase as a ligninolytic enzyme has been known for its green-catalysis mechanism, which has the potential to be applied to food industries. Lignocellulose found in agro-industrial waste is promising for laccase production as a substrate, that could be encountered in pineapple (<i>Ananas comosus</i>) and Arabica coffee (<i>Coffea arabica</i>) industrial residue. To boost enzyme activity, laccase characterization was performed using <i>Ganoderma lucidum</i> under solid-state fermentation. This study aims to determine the lignocellulosic waste substrate that can produce the highest laccase activity and evaluate the effect of lignocellulosic substrate types under solid-state fermentation. <b>Materials and Methods:</b> There were 3 variants of lignocellulosic substrates used, consisting of pineapple peel, pineapple leaf and coffee husk. Characterization was carried out during pre-production by determining lignocellulose composition by Van Soest method and qualitative assay of <i>G. lucidum</i> laccase, continued with post-production including dry cell weight, pH measurement during fermentation and laccase activity. Laccase activity was statistically analyzed using Analysis of Variance (ANOVA). <b>Results:</b> The characterization indicated that the type of substrate used had the potential to be used as a substrate in laccase production from <i>G. lucidum</i> under solid-state fermentation. The highest laccase activity was obtained on sample coffee husk S<sub>3</sub> on the 8th day of incubation with average values of laccase activity 2622.07±68.49 U/L. Based on ANOVA results, types of lignocellulosic waste substrates used have significant effects on laccase activity. <b>Conclusion:</b> <i>Ganoderma lucidum</i> has the potential to produce laccase enriched with pineapple waste and coffee husk substrates under solid fermentation.
Collapse
|
3
|
Hamrouni R, Regus F, Claeys-Bruno M, Farnet Da Silva AM, Orsière T, Laffont-Schwob I, Boudenne JL, Dupuy N. Statistical Experimental Design as a New Approach to Optimize a Solid-State Fermentation Substrate for the Production of Spores and Bioactive Compounds from Trichoderma asperellum. J Fungi (Basel) 2023; 9:1123. [PMID: 37998928 PMCID: PMC10672489 DOI: 10.3390/jof9111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Managing organic agricultural wastes is a challenge in today's modern agriculture, where the production of different agricultural goods leads to the generation of large amounts of waste, for example, olive pomace and vine shoot in Mediterranean Europe. The discovery of a cost-effective and environment-friendly way to valorize such types of waste in Mediterranean Europe is encouraged by the European Union regulation. As an opportunity, organic agricultural waste could be used as culture media for solid-state fermentation (SSF) for fungal strains. This methodology represents a great opportunity to produce secondary metabolites like 6-pentyl-alpha-pyrone (6-PP), a lactone compound with antifungal properties against phytopathogens, produced by Trichoderma spp. Therefore, to reach adequate yields of 6-PP, lytic enzymes, and spores, optimization using specific agricultural cheap local wastes from Southeastern France is in order. The present study was designed to show the applicability of an experimental admixture design to find the optimal formulation that favors the production of 6-PP. To conclude, the optimized formulation of 6-PP production by Trichoderma under SSF contains 18% wheat bran, 23% potato flakes, 20% olive pomace, 14% olive oil, 24% oatmeal, and 40% vine shoots.
Collapse
Affiliation(s)
- Rayhane Hamrouni
- CNRS, IRD, IMBE, Avignon Université, Aix Marseille University, 13013 Marseille, France; (F.R.); (M.C.-B.); (A.-M.F.D.S.); (T.O.)
| | - Flor Regus
- CNRS, IRD, IMBE, Avignon Université, Aix Marseille University, 13013 Marseille, France; (F.R.); (M.C.-B.); (A.-M.F.D.S.); (T.O.)
- IRD, LPED, UMR 151, Aix Marseille University, 13331 Marseille, France;
| | - Magalie Claeys-Bruno
- CNRS, IRD, IMBE, Avignon Université, Aix Marseille University, 13013 Marseille, France; (F.R.); (M.C.-B.); (A.-M.F.D.S.); (T.O.)
| | - Anne-Marie Farnet Da Silva
- CNRS, IRD, IMBE, Avignon Université, Aix Marseille University, 13013 Marseille, France; (F.R.); (M.C.-B.); (A.-M.F.D.S.); (T.O.)
| | - Thierry Orsière
- CNRS, IRD, IMBE, Avignon Université, Aix Marseille University, 13013 Marseille, France; (F.R.); (M.C.-B.); (A.-M.F.D.S.); (T.O.)
| | | | | | - Nathalie Dupuy
- CNRS, IRD, IMBE, Avignon Université, Aix Marseille University, 13013 Marseille, France; (F.R.); (M.C.-B.); (A.-M.F.D.S.); (T.O.)
| |
Collapse
|
4
|
Rafeeq H, Afsheen N, Rafique S, Arshad A, Intisar M, Hussain A, Bilal M, Iqbal HMN. Genetically engineered microorganisms for environmental remediation. CHEMOSPHERE 2023; 310:136751. [PMID: 36209847 DOI: 10.1016/j.chemosphere.2022.136751] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/12/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
In the recent era, the increasing persistence of hazardous contaminants is badly affecting the globe in many ways. Due to high environmental contamination, almost every second species on earth facing the worst issue in their survival. Advances in newer remediation approaches may help enhance bioremediation's quality, while conventional procedures have failed to remove hazardous compounds from the environment. Chemical and physical waste cleanup approaches have been used in current circumstances; however, these methods are costly and harmful to the environment. Thus, there has been a rise in the use of bioremediation due to an increase in environmental contamination, which led to the development of genetically engineered microbes (GEMs). It is safer and more cost-effective to use engineered microorganisms rather than alternative methods. GEMs are created by introducing a stronger protein into bacteria through biotechnology or genetic engineering to enhance the desired trait. Biodegradation of oil spills, halobenzoates naphthalenes, toluenes, trichloroethylene, octanes, xylenes etc. has been accomplished using GEMs such bacteria, fungus, and algae. Biotechnologically induced microorganisms are more powerful than naturally occurring ones and may degrade contaminants faster because they can quickly adapt to new pollutants they encounter or co-metabolize. Genetic engineering is a worthy process that will benefit the environment and ultimately the health of our people.
Collapse
Affiliation(s)
- Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad Campus, Faisalabad, 38000, Pakistan
| | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad Campus, Faisalabad, 38000, Pakistan
| | - Sadia Rafique
- Departement of Pharmacy, Riphah International University, Faisalabad Campus, Faisalabad, 38000, Pakistan
| | - Arooj Arshad
- Department of Biochemistry, University of Agriculture Faisalabad, 38000, Pakistan
| | - Maham Intisar
- Department of Biochemistry, University of Agriculture Faisalabad, 38000, Pakistan
| | - Asim Hussain
- Department of Biochemistry, University of Agriculture Faisalabad, 38000, Pakistan
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
5
|
Benavides V, Pinto-Ibieta F, Serrano A, Rubilar O, Ciudad G. Use of Anthracophyllum Discolor and Stereum Hirsutum as a Suitable Strategy for Delignification and Phenolic Removal of Olive Mill Solid Waste. Foods 2022; 11:foods11111587. [PMID: 35681337 PMCID: PMC9180551 DOI: 10.3390/foods11111587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
This study evaluated the use of the white-rot fungi (WRF) Anthracophyllum discolor and Stereum hirsutum as a biological pretreatment for olive mill solid mill waste (OMSW). The WRF strains proposed were added directly to OMSW. The assays consisted of determining the need to add supplementary nutrients, an exogenous carbon source or use agitation systems, and evaluating WRF growth, enzyme activity, phenolic compound removal and lignin degradation. The highest ligninolytic enzyme activity was found at day 10, reaching 176.7 U/L of manganese-independent peroxidase (MniP) produced by A. discolor, and the highest phenolic removal (more than 80% with both strains) was reached after 24 days of incubation. The confocal laser scanning microscopy analysis (CLSM) confirmed lignin degradation through the drop in lignin relative fluorescence units (RFU) from 3967 for untreated OMSW to 235 and 221 RFU, showing a lignin relative degradation of 94.1% and 94.4% after 24 days of treatment by A. discolor and S. hirsutum, respectively. The results demonstrate for the first time that A. discolor and S. hirsutum were able to degrade lignin and remove phenolic compounds from OMSW using this as the sole substrate without adding other nutrients or using agitation systems. This work indicates that it could be possible to design an in situ pretreatment of the valorization of OMSW, avoiding complex systems or transportation. In this sense, future research under non-sterile conditions is needed to evaluate the competition of WRF with other microorganisms present in the OMSW. The main drawbacks of this work are associated with both the low reaction time and the water addition. However, OMSW is seasonal waste produced in one season per year, being stored for a long time. In terms of water addition, the necessary optimization will be addressed in future research.
Collapse
Affiliation(s)
- Viviana Benavides
- Programa de Doctorado en Ciencias de Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile;
| | - Fernanda Pinto-Ibieta
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar #01145, Casilla 54-D, Temuco 4780000, Chile; (F.P.-I.); (O.R.)
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Casilla 15-D, Temuco 4780000, Chile
| | - Antonio Serrano
- Departamento de Microbiología, Facultad de Farmacia, Campus Universitario de Cartuja s/n, Universidad de Granada, 18011 Granada, Spain;
- Instituto de Investigación del Agua, Universidad de Granada, 18071 Granada, Spain
| | - Olga Rubilar
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar #01145, Casilla 54-D, Temuco 4780000, Chile; (F.P.-I.); (O.R.)
- Scientific and Technological Bioresources Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar #01145, Casilla 54-D, Temuco 4780000, Chile
| | - Gustavo Ciudad
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar #01145, Casilla 54-D, Temuco 4780000, Chile; (F.P.-I.); (O.R.)
- Scientific and Technological Bioresources Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar #01145, Casilla 54-D, Temuco 4780000, Chile
- Instituto del Medio Ambiente (IMA), Universidad de La Frontera, Avenida Francisco Salazar #01145, Casilla 54-D, Temuco 4780000, Chile
- Correspondence: ; Tel.: +56-45-2325556
| |
Collapse
|
6
|
Santos GB, de Sousa Francisco Filho Á, Rêgo da Silva Rodrigues J, Rodrigues de Souza R. Cellulase production by Aspergillus niger using urban lignocellulosic waste as substrate: Evaluation of different cultivation strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114431. [PMID: 34995940 DOI: 10.1016/j.jenvman.2022.114431] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/08/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Cellulases are used in various industries, acting efficiently and sustainably in the degradation of cellulose contained in different raw materials and recovering high value products. It is the third largest group of enzymes consumed industrially, as they are required in processes linked to the food, biofuel, textile, cleaning products, among others. However, the main disadvantage in the use of commercial cellulases is the high cost. In this context, the objective of this work was to determine conditions for obtaining more efficient and economical cellulases. For this, the efficiency in obtaining the extracellular cellulases endoglucanase (CMCase) and exoglucanase (FPase) by a fungus Aspergillus niger was investigated using an urban lignocellulosic waste as substrate characterized by tree leaves collected from squares and avenues in urban areas. As urban lignocellulosic waste is an innovative raw material, its chemical composition was determined. This substrate contains 20.36% cellulose and induced the production of cellulases in all fermentation methods, proving to be a promising and sustainable source. The influence of the nutrient medium on CMCase and FPase activities was evaluated for three different sequential fermentation (SF) configurations. Medium 2 provided an increase of up to 100 U/L of CMCase and FPase in relation to medium 1. The interactive effect of pH and moisture content on CMCase e FPase production under SF was studied in a central composite design (CCD). Also, different fermentation methods (solid state, submerged and sequential) were evaluated. The use of SF increased the enzymatic activities of both cellulases by 140% compared to other conventional methods and also stood out in the production of proteins (270.05 μg/mL) and reducing sugars (1.19 mg/mL). The desirability function determined the optimal activities of CMCase and FPase as 413.49 U/L and 230.68 U/L, respectively, obtained from the optimal variables of pH 5.5 and 75% moisture content under SF. The effect of pH and moisture content on the activity of each cellulase was analyzed using the Pareto chart and response surface methodology (RSM). These results revealed favorable strategies for cellulase production, such as the use of urban lignocellulosic waste, SF and ideal operational conditions.
Collapse
Affiliation(s)
- Gislaine Brito Santos
- Department of Chemical Engineering, Federal University of Sergipe, 49100-000, Sergipe, Brazil.
| | | | | | | |
Collapse
|
7
|
Chmelová D, Legerská B, Kunstová J, Ondrejovič M, Miertuš S. The production of laccases by white-rot fungi under solid-state fermentation conditions. World J Microbiol Biotechnol 2022; 38:21. [PMID: 34989891 DOI: 10.1007/s11274-021-03207-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
Laccases (E.C. 1.10.3.2) produced by white-rot fungi (WRF) can be widely used, but the high cost prevents their use in large-scale industrial processes. Finding a solution to the problem could involve laccase production by solid-state fermentation (SSF) simulating the natural growth conditions for WRF. SSF offers several advantages over conventional submerged fermentation (SmF), such as higher efficiency and productivity of the process and pollution reduction. The aim of this review is therefore to provide an overview of the current state of knowledge about the laccase production by WRF under SSF conditions. The focus is on variations in the up-stream process, fermentation and down-stream process and their impact on laccase activity. The variations of up-stream processing involve inoculum preparation, inoculation of the medium and formulation of the propagation and production media. According to the studies, the production process can be shortened to 5-7 days by the selection of a suitable combination of lignocellulosic material and laccase producer without the need for any additional components of the culture medium. Efficient laccase production was achieved by valorisation of wastes as agro-food, municipal wastes or waste generated from wood processing industries. This leads to a reduction of costs and an increase in competitiveness compared to other commonly used methods and/or procedures. There will be significant challenges and opportunities in the future, where SSF could become more efficient and bring the enzyme production to a higher level, especially in new biorefineries, bioreactors and biomolecular/genetic engineering.
Collapse
Affiliation(s)
- Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic
| | - Barbora Legerská
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic
| | - Jana Kunstová
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic.
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic
| |
Collapse
|
8
|
Wu S, Zhou R, Ma Y, Fang Y, Xie G, Gao X, Xiao Y, Liu J, Fang Z. Development of a consortium-based microbial agent beneficial to composting of distilled grain waste for Pleurotus ostreatus cultivation. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:242. [PMID: 34920748 PMCID: PMC8684267 DOI: 10.1186/s13068-021-02089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/04/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Pleurotus ostreatus is an edible mushroom popularly cultivated worldwide. Distilled grain waste (DGW) is a potential substrate for P. ostreatus cultivation. However, components in DGW restrict P. ostreatus mycelial growth. Therefore, a cost-effective approach to facilitate rapid P. ostreatus colonization on DGW substrate will benefit P. ostreatus cultivation and DGW recycling. RESULTS Five dominant indigenous bacteria, Sphingobacterium sp. X1, Ureibacillus sp. X2, Pseudoxanthomonas sp. X3, Geobacillus sp. X4, and Aeribacillus sp. X5, were isolated from DGW and selected to develop a consortium-based microbial agent to compost DGW for P. ostreatus cultivation. Microbial agent inoculation led to faster carbohydrate metabolism, a higher temperature (73.2 vs. 71.2 °C), a longer thermophilic phase (5 vs. 3 days), and significant dynamic changes in microbial community composition and diversity in composts than those of the controls. Metagenomic analysis showed the enhanced microbial metabolisms, such as xenobiotic biodegradation and metabolism and terpenoid and polyketide metabolism, during the mesophilic phase after microbial agent inoculation, which may facilitate the fungal colonization on the substrate. In accordance with the bioinformatic analysis, a faster colonization of P. ostreatus was observed in the composts with microbial inoculation than in control after composting for 48 h, as indicated from substantially higher fungal ergosterol content, faster lignocellulose degradation, and higher lignocellulase activities in the former than in the latter. The final mushroom yield shared no significant difference between composts with microbial inoculation and control, with 0.67 ± 0.05 and 0.60 ± 0.04 kg fresh mushroom/kg DGW, respectively (p > 0.05). CONCLUSION The consortium-based microbial agent comprised indigenous microorganisms showing application potential in composting DGW for providing substrate for P. ostreatus cultivation and will provide an alternative to facilitate DGW recycling.
Collapse
Affiliation(s)
- Sibao Wu
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
| | - Rongrong Zhou
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
| | - Yuting Ma
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
| | - Yong Fang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
| | - Guopai Xie
- Anhui Golden Seed Winery Co., LTD, Fuyang, 341200, Anhui, China
| | - Xuezhi Gao
- Livestock and Poultry Breeding Service Center of Fuyang City, Fuyang, 341200, Anhui, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China.
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China.
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China.
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China.
| |
Collapse
|
9
|
|
10
|
Influence of operating conditions on proton conductivity of nanocellulose films using two agroindustrial wastes: Sugarcane bagasse and pinewood sawdust. Carbohydr Polym 2020; 238:116171. [DOI: 10.1016/j.carbpol.2020.116171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/25/2020] [Accepted: 03/12/2020] [Indexed: 12/28/2022]
|