1
|
Wang Y, Chen Y, Xie H, Cao W, Chen R, Kong Z, Zhang Y. Insight into the effects and mechanism of cellulose and hemicellulose on anaerobic digestion in a CSTR-AnMBR system during swine wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161776. [PMID: 36702270 DOI: 10.1016/j.scitotenv.2023.161776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The cellulose and hemicellulose content in swine wastewater significantly affected the performance of a continuous stirred tank reactor-anaerobic membrane bioreactor (CSTR-AnMBR). When the influent content of cellulose and hemicellulose was controlled at 3.88 ± 0.89 and 9.72 ± 2.05 g/L, respectively, the CSTR-AnMBR showed a low methane yield (0.04-0.06 L CH4/g COD) at both HRT of 12 d and HRT 30 d. The functional microbes preferred to use the freshly added degradable COD, and the decomposition of refractory COD was paused. Meanwhile, the AnMBR unit was troubled by rapidly growing membrane fouling. The trans-membrane pressure increased with a rate of 1.63 kPa/d (HRT = 12d), and 0.99 kPa/d (HRT = 30 d) exacerbated the reactor performance. In high cellulose and hemicellulose-containing environments, the cellulolytic and hemicellulolytic microbes, including Bacteroidetes and Proteobacteria, were stimulated to a certain extent. In addition, cellulose and hemicellulose up-regulated the gene expression for sugar and amino acid metabolism, decreasing the abundance of metabolism related to methane production. When the influent content of cellulose and hemicellulose decreased to 0.62 ± 0.12 and 0.77 ± 0.30 g/L, respectively, the system's performance was significantly improved, microorganisms produced less low-molecular-weight soluble microbial products, which also reduced membrane fouling risk. This study provides significant guidance for treating livestock manure with the CSTR-AnMBR system.
Collapse
Affiliation(s)
- Yuzheng Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Yuqi Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Hongyu Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Rong Chen
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, Shaanxi Province, 710055, China
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province, 215009, China
| | - Yanlong Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of Environment and Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China.
| |
Collapse
|
2
|
Silva AFR, Lebron YAR, Moreira VR, Ribeiro LA, Koch K, Amaral MCS. High-retention membrane bioreactors for sugarcane vinasse treatment: Opportunities for environmental impact reduction and wastewater valorization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117001. [PMID: 36565496 DOI: 10.1016/j.jenvman.2022.117001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Ethanol production has increased over the years, and Brazil ranking second in the world using sugarcane as the main raw material. However, 10-15 L of vinasse are generated per liter of ethanol produced. Besides large volumes, this wastewater has high polluting potential due to its low pH and high concentrations of organic matter and nutrients. Given the high biodegradability of the organic matter, the treatment of this effluent by anaerobic digestion and membrane separation processes results in the generation of high value-added byproducts such as volatile fatty acids (VFAs), biohydrogen and biogas. Membrane bioreactors have been widely evaluated due to the high efficiency achieved in vinasse treatment. In recent years, high retention membrane bioreactors, in which high retention membranes (nanofiltration, reverse osmosis, forward osmosis and membrane distillation) are combined with biological processes, have gained increasing attention. This paper presents a critical review focused on high retention membrane bioreactors and the challenges associated with the proposed configurations. For nanofiltration membrane bioreactor (NF-MBR), the main drawback is the higher fouling propensity due to the hydraulic driving force. Nonetheless, the development of membranes with high permeability and anti-fouling properties is uprising. Regarding osmotic membrane bioreactor (OMBR), special attention is needed for the selection of a proper draw solution, which desirably should be low cost, have high osmolality, reduce reverse salt flux, and can be easily reconcentrated. Membrane distillation bioreactor (MDBR) also exhibit some shortcomings, with emphasis on energy demand, that can be solved with the use of low-grade and residual heat, or renewable energies. Among the configurations, MDBR seems to be more advantageous for sugarcane vinasse treatment due to the lower energy consumption provided by the use of waste heat from the effluent, and due to the VFAs recovery, which has high added value.
Collapse
Affiliation(s)
- A F R Silva
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Y A R Lebron
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - V R Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - L A Ribeiro
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - K Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany
| | - M C S Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Elliott JA, Ball AS, Shah K. Investigations into valorisation of trade wastewater for biomethane production. Heliyon 2023; 9:e13309. [PMID: 36816286 PMCID: PMC9932477 DOI: 10.1016/j.heliyon.2023.e13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Biogas production from wastewater is one way that industrial sites can work towards the UN Sustainable Development Goals, while recovering a valuable resource. The objective of this study was to investigate the suitability of data collected by municipal wastewater service providers as a method of classifying and screening waste producers as potential sites for biogas resource recovery by anaerobic digestion. Industrial wastewater samples, including raw effluent and treated waste ready for discharge, were examined, and biomethane potential assays performed. Results of chemical analysis and lab-scale digestion were compared to historical service provider data, and patterns were observed. Biomethane yields of up to 357 mL/gVS and 287mL/gVS were achieved from raw and treated effluent respectively. Digestion at the top four prospects could produce over 4690 GJ of methane and save $47,000 in natural gas costs, offsetting 490 tonnes of CO2 equivalent annually. These streams, from logistics, waste management, food and animal product businesses, combined high levels of degradable substrates and low levels of inhibitory components. While it is unlikely that this type of screening program can be completely accurate, certain parameters, including high sodium concentration, are applicable for discounting the potential for biogas production. This knowledge can be a valuable tool in the process of selecting sites for future resource recovery, therefore increasing the uptake of these processes, resulting in economic, environmental, and climate change mitigation benefits.
Collapse
Affiliation(s)
- Jake A.K. Elliott
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University,Bundoora 3083, Australia
| | - Andrew S. Ball
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University,Bundoora 3083, Australia
| | - Kalpit Shah
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University,Bundoora 3083, Australia
| |
Collapse
|
4
|
Yue C, Chen Y, Zhang W, Zheng Y, Hu X, Shang B. Direct Purification of Digestate Using Polymeric Ultrafiltration Membranes: Influence of Materials on Filtration Behavior and Fouling Characteristics. MEMBRANES 2022; 12:882. [PMID: 36135901 PMCID: PMC9503509 DOI: 10.3390/membranes12090882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
In-depth exploration of filtration behavior and fouling characteristics of polymeric ultrafiltration (UF) membranes can provide guidance for the selection of materials and the control of membrane fouling during the purification of digestate. In this study, four types of polymeric membranes, (polyethersulfone (PES), polysulfone (PS), polyvinylidene fluoride (PVDF), and polyacrylonitrile (PAN)), were employed to filter digestate from swine manure. The results showed that the viscosity of the digestate dropped from 45.0 ± 11.3 mPa·s to 18.0 ± 9.8 mPa·s, with an increase in temperature from 30.0 °C to 45.0 °C. The four membrane fluxes all increased by more than 30%, with the cross flow velocity increasing from 1.0 m s−1 to 2.0 m s−1. During the batch experiments, the flux maintenance abilities of the membranes were in the order: PAN > PS > PVDF > PES. There were no significant differences in the effects of membrane materials on the removal of COD, TN, and TP (p < 0.05). For UV254 removal efficiency, PS showed the highest efficiency (68.6%), while PVDF showed the lowest efficiency (63.4%). The major fouling type was irreversible hydraulic fouling, and the main elements of scaling were C, O, S, and Ca. Pseudomonadales were the dominant bacteria in the PS (26.2%) and in the PVDF (51.4%) fouling layers, while Bacteroidales were the dominant bacteria in the PES (26.8%) and in the PAN (14.7%) fouling layers. The flux recovery rates (FRRs) of the cleaning methods can be arranged as follows: NaClO > NaOH > Citric acid ≈ Tap water. After NaClO cleaning, the PVDF membrance showed the highest FRR (73.1%), and the PAN membrane showed the lowest FRR (30.1%).
Collapse
Affiliation(s)
- Caide Yue
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yongxing Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Wanqin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yunhao Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xuzhao Hu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Bin Shang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
5
|
Qu Y, Li Y, Zhu H. Methane production improvement in an osmotic membrane bioreactor for sludge anaerobic digestion: pretreatment optimization and long-term performance. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2786-2796. [PMID: 35576269 DOI: 10.2166/wst.2022.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrolysis is the first step and also rate-limiting step of anaerobic digestion which recovers energy from waste sludge. In order to accelerate the reaction rate of the hydrolysis, many pretreatment conditions had been taken into account. In this study, thermal pretreatment and alkaline pretreatment were combined with each other, serving as a thermal-alkaline pretreatment approach. Firstly, an orthogonal designed batch experiment was conducted to evaluate the pretreatment conditions, and then the optimal conditions were applied to an osmotic membrane bioreactor for a long-term investigation. Based on batch experiments, sludge treated by NaOH at pH 9 or 10 showed a better effect in cell solubilization. Sludge treated by Ca(OH)2 at pH 9, and sludge treated by NaOH at pH 9 or 10 showed advantages in methane production. Ultimately, sludge treated by NaOH at pH 9 and then heated at 90 °C for 60 min was selected as the optimal pretreatment condition. During the long-term operation of osmotic membrane bioreactor for sludge anaerobic digestion, the volume methane production of the sludge treated by thermal-alkaline was maintained at around 200-300 mL/L/d, which was 2-3 times of the sludge treated by ultrasound.
Collapse
Affiliation(s)
- Yuetong Qu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China E-mail:
| | - Yunqian Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China E-mail:
| | - Hongtao Zhu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China E-mail:
| |
Collapse
|
6
|
Hosseinzadeh A, Zhou JL, Navidpour AH, Altaee A. Progress in osmotic membrane bioreactors research: Contaminant removal, microbial community and bioenergy production in wastewater. BIORESOURCE TECHNOLOGY 2021; 330:124998. [PMID: 33757679 DOI: 10.1016/j.biortech.2021.124998] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Renewable energy, water conservation, and environmental protection are the most important challenges today. Osmotic membrane bioreactor (OMBR) is an innovative process showing superior performance in bioenergy production, eliminating contaminants, and low fouling tendency. However, salinity build-up is the main drawback of this process. Identifying the microbial community can improve the process in bioenergy production and contaminant treatment. This review aims to study the recent progress and challenges of OMBRs in contaminant removal, microbial communities and bioenergy production. OMBRs are widely reported to remove over 80% of total organic carbon, PO43-, NH4+ and emerging contaminants from wastewater. The most important microbial phyla for both hydrogen and methane production in OMBR are Firmicutes, Proteobacteria and Bacteroidetes. Firmicutes' dominance in anaerobic processes is considerably increased from usually 20% at the beginning to 80% under stable condition. Overall, OMBR process has great potential to be applied for simultaneous bioenergy production and wastewater treatment.
Collapse
Affiliation(s)
- Ahmad Hosseinzadeh
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| | - Amir H Navidpour
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
7
|
Yi X, Zhong H, Xie M, Wang X. A novel forward osmosis reactor assisted with microfiltration for deep thickening waste activated sludge: performance and implication. WATER RESEARCH 2021; 195:116998. [PMID: 33714909 DOI: 10.1016/j.watres.2021.116998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Waste activated sludge (WAS) treatment has gained growing interests for its increasingly capacity and high process cost. Sludge thickening is generally the first process of the WAS treatment. However, traditional sludge thickening approach was restrained by large footprint, low thickening efficiency, and tendency of releasing phosphorus. Here, we reported a novel microfiltration (MF) membrane assisting forward osmosis (FO) process (MF-FO) for sludge thickening. The MF-FO reactor achieved a sludge thickening of the mixed liquor suspended solids (MLSS) concentration from approximately 7 to 50 g/L after 10-day operation. More importantly, the effluent quality after FO filtration was superior with total organic carbon (TOC), ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N) and total phosphorus (TP) of 1.94 ± 0.46, 0.02 ± 0.07, 4.55 ± 1.59 and 0.24 ± 0.26 mg/L, respectively. Additionally, the integration of MF membrane successfully controlled the salinity of the MF-FO reactor in a low range of 1.6-3.1 mS/cm, which mitigated the flux decline of FO membrane and thus prolonged the operating time. In this case, the flux decline of FO membrane in the MF-FO reactor was mainly due to the membrane fouling. Furthermore, the fouling layer on the FO membrane surface was a gel layer mainly composed of biofoulants and organic foulants when the MLSS concentration was less than 30 g/L, while it turned to a cake layer when the MLSS concentration exceeded 30 g/L. Results reported here demonstrated that the MF-FO reactor is a promising WAS thickening technology for its excellent thickening performance and high effluent quality of FO membrane.
Collapse
Affiliation(s)
- Xiawen Yi
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Huihui Zhong
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Ming Xie
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
8
|
Wu X, Lau CH, Pramanik BK, Zhang J, Xie Z. State-of-the-Art and Opportunities for Forward Osmosis in Sewage Concentration and Wastewater Treatment. MEMBRANES 2021; 11:membranes11050305. [PMID: 33919353 PMCID: PMC8143320 DOI: 10.3390/membranes11050305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022]
Abstract
The application of membrane technologies for wastewater treatment to recover water and nutrients from different types of wastewater can be an effective strategy to mitigate the water shortage and provide resource recovery for sustainable development of industrialisation and urbanisation. Forward osmosis (FO), driven by the osmotic pressure difference between solutions divided by a semi-permeable membrane, has been recognised as a potential energy-efficient filtration process with a low tendency for fouling and a strong ability to filtrate highly polluted wastewater. The application of FO for wastewater treatment has received significant attention in research and attracted technological effort in recent years. In this review, we review the state-of-the-art application of FO technology for sewage concentration and wastewater treatment both as an independent treatment process and in combination with other treatment processes. We also provide an outlook of the future prospects and recommendations for the improvement of membrane performance, fouling control and system optimisation from the perspectives of membrane materials, operating condition optimisation, draw solution selection, and multiple technologies combination.
Collapse
Affiliation(s)
- Xing Wu
- CSIRO Manufacturing, Clayton South, VIC 3169, Australia;
| | - Cher Hon Lau
- School of Engineering, The University of Edinburgh, Edinburgh EH9 3FB, UK;
| | | | - Jianhua Zhang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia;
| | - Zongli Xie
- CSIRO Manufacturing, Clayton South, VIC 3169, Australia;
- Correspondence:
| |
Collapse
|
9
|
Fouling reduction and recovery during forward osmosis of wastewater using an electroactive CNT composite membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Mu L, Zhang L, Ma J, Zhu K, Chen C, Li A. Enhancement of anaerobic digestion of phoenix tree leaf by mild alkali pretreatment: Optimization by Taguchi orthogonal design and semi-continuous operation. BIORESOURCE TECHNOLOGY 2020; 313:123634. [PMID: 32570076 DOI: 10.1016/j.biortech.2020.123634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
This study aimed at evaluating the valorization of a typical yard waste, phoenix tree leaf (PTL), through mild alkali pretreatment followed by anaerobic digestion (AD). To this end, L9 Taguchi orthogonal biochemical methane potential (BMP) tests and semi-continuous AD experiments were conducted to examine the optimum pretreatment condition and the long term effect of alkali pretreatment on AD. The community structure evolutions were analyzed by high throughput 16S rRNA gene pyrosequencing. The results indicated that alkali pretreatment was effective on decrystallization and releasing more surface of PTL for enzyme attacking. The methane yield was positively correlated with lignin removal (R2=0.8242). In semi-continuous mode, 151.5±7.9 mL/g VS of the methane yield was obtained for alkali pretreated PTL, which was 80% higher than that of untreated one. Microbial community analysis indicated that alkali pretreatment led to a higher abundance of dominated bacteria (Bacteroidetes and Clostridia) and archaea of Methanosaeta.
Collapse
Affiliation(s)
- Lan Mu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, China
| | - Lei Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, China.
| | - Jiao Ma
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, China
| | - Kongyun Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, China
| | - Chuanshuai Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, China
| | - Aimin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, China
| |
Collapse
|
11
|
Gao Y, Fang Z, Chen C, Zhu X, Liang P, Qiu Y, Zhang X, Huang X. Evaluating the performance of inorganic draw solution concentrations in an anaerobic forward osmosis membrane bioreactor for real municipal sewage treatment. BIORESOURCE TECHNOLOGY 2020; 307:123254. [PMID: 32247274 DOI: 10.1016/j.biortech.2020.123254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Sewage can become a valuable source if its treatment is re-oriented for recovery. An anaerobic forward osmosis membrane bioreactor (AnOMBR) was developed for real municipal sewage treatment to investigate performance, biogas production, flux change and mixed liquor characteristics. The AnOMBR had a good treatment capacity with removal ratio of chemical oxygen demand, ammonia nitrogen, total nitrogen and total phosphorus more than 96%, 88%, 89% and almost 100%. Although high DS concentration increased the initial flux, it caused rapid decline and poor recoverability of FO membrane flux. Low DS concentration led to too long hydraulic retention time, thus resulting in a low reactor efficiency. Additionally, it was observed that salt, protein, polysaccharide and humic acid were all accumulated in the reactor, which was not conducive to stable long-term operation. Based on the characteristics of membrane fouling, salt accumulation and AnOMBR performance, the optimal DS of 1 M NaCl solution was selected.
Collapse
Affiliation(s)
- Yue Gao
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Zhou Fang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Cheng Chen
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Xianzheng Zhu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Peng Liang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yong Qiu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Zhang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Wang Q, Zhang P, Bao S, Liang J, Wu Y, Chen N, Wang S, Cai Y. Chain elongation performances with anaerobic fermentation liquid from sewage sludge with high total solid as electron acceptor. BIORESOURCE TECHNOLOGY 2020; 306:123188. [PMID: 32199398 DOI: 10.1016/j.biortech.2020.123188] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
This work studied the effect of total solid (TS) of sewage sludge on VFA production and composition in anaerobic fermentation. Results revealed that VFA concentration reached the highest of 10.16 g/L and the ratio of acetic acid, propionic acid and n-butyric acid was 5:2:2 with the 8% TS sewage sludge. In subsequent chain elongation with sludge fermentation liquid, n-caproic acid concentration reached 43.45 mmol/L. The microbial community analysis indicated that relative abundance of Clostridium_sensu_stricto_12 for n-caproic acid production was high (52.41%). The chain elongation with sludge fermentation liquid had more pathways to produce n-caproic acid, and the chain elongation reactions were thermodynamically possible. The mixed VFAs and high concentration of n-butyric acid benefitted n-caproic acid production. Carbon balance revealed that the VFA composition of sludge fermentation liquid was beneficial to the chain elongation. This study will contribute to wasted sludge minimization and high-value material production.
Collapse
Affiliation(s)
- Qingyan Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404632, China.
| | - Shuai Bao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jinsong Liang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Wu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404632, China
| | - Na Chen
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Siqi Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yajing Cai
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
13
|
Abdullahi K, Elreedy A, Fujii M, Ibrahim MG, Tawfik A. Robustness of anaerobes exposed to cyanuric acid contaminated wastewater and achieving efficient removal via optimized co-digestion scheme. J Adv Res 2020; 24:211-222. [PMID: 32373355 PMCID: PMC7191646 DOI: 10.1016/j.jare.2020.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 11/16/2022] Open
Abstract
The impact of various industrial pollutants on anaerobes and the biodegradation potentials need much emphasis. This study aims to investigate the response of anaerobic microbial systems to cyanuric acid (CA) exposure; CA is toxic and possible carcinogen. First, the long-term exposure of mixed culture bacteria (i.e., municipal sludge) to low-strength wastewater containing 20 mg/L CA was conducted in an up-flow anaerobic staged reactor. Stable performance and sludge granulation were observed, and the microbial community structure showed the progression of genus Acinetobacter known as CA degrader. Second, batch-mode experiment was performed to examine the CA biodegradability at higher doses (up to 250 mg/L of CA) in the absence and presence of glucose as a co-substrate; response surface-based optimization was used to design this experiment and to estimate the optimum CA-glucose combination. CA removal of 77-98% was achieved when CA was co-digested with glucose (250-1,000 mg/L), after 7 days-incubation at temperature of 37 °C, compared to 34% when CA was solely digested. Further, the obtained methane yield dropped when CA exceeded over 125 mg/L, though the deterioration was mitigated by addition of higher concentration of glucose. Overall, we conclude that CA is efficiently degraded under anaerobic conditions when being co-digested with readily assimilable substrate.
Collapse
Affiliation(s)
- Kabir Abdullahi
- Environmental Engineering Department, Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt
| | - Ahmed Elreedy
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan.,Sanitary Engineering Department, Alexandria University, Alexandria 21544, Egypt
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Mona G Ibrahim
- Environmental Engineering Department, Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt.,Environmental Health Department, High Institute of Public Health, Alexandria University, Alexandria 21544, Egypt
| | - Ahmed Tawfik
- Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
14
|
Ang WL, Mohammad AW, Johnson D, Hilal N. Unlocking the application potential of forward osmosis through integrated/hybrid process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136047. [PMID: 31864996 DOI: 10.1016/j.scitotenv.2019.136047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Study of forward osmosis (FO) has been increasing steadily over recent years with applications mainly focusing on desalination and wastewater treatment processes. The working mechanism of FO lies in the natural movement of water between two streams with different osmotic pressure, which makes it useful in concentrating or diluting solutions. FO has rarely been operated as a stand-alone process. Instead, FO processes often appear in a hybrid or integrated form where FO is combined with other treatment technologies to achieve better overall process performance and cost savings. This article aims to provide a comprehensive review on the need for hybridization/integration for FO membrane processes, with emphasis given to process enhancement, draw solution regeneration, and pretreatment for FO fouling mitigation. In general, integrated/hybrid FO processes can reduce the membrane fouling propensity; prepare the solution suitable for subsequent value-added uses and production of renewable energy; lower the costs associated with energy consumption; enhance the quality of treated water; and enable the continuous operation of FO through the regeneration of draw solution. The future potential of FO lies in the success of how it can be hybridized or integrated with other technologies to minimize its own shortcomings, while enhancing the overall performance.
Collapse
Affiliation(s)
- Wei Lun Ang
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Chemical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | - Abdul Wahab Mohammad
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Chemical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Daniel Johnson
- Centre for Water Advanced Technologies and Environmental Research (CWATER), College of Engineering, Swansea University, Swansea SA1 8EN, UK
| | - Nidal Hilal
- Centre for Water Advanced Technologies and Environmental Research (CWATER), College of Engineering, Swansea University, Swansea SA1 8EN, UK; NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
15
|
Pathak N, Phuntsho S, Tran VH, Johir MAH, Ghaffour N, Leiknes T, Fujioka T, Shon HK. Simultaneous nitrification-denitrification using baffled osmotic membrane bioreactor-microfiltration hybrid system at different oxic-anoxic conditions for wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 253:109685. [PMID: 31654928 DOI: 10.1016/j.jenvman.2019.109685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 09/17/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
The efficacy of a baffled osmotic membrane bioreactor-microfiltration (OMBR-MF) hybrid system equipped with thin film forward osmosis membrane for wastewater treatment was evaluated at laboratory scale. The novel OMBR-MF hybrid system involved baffles, that separate oxic and anoxic zones in the aerobic reactor for simultaneous nitrification and denitrification (SND), and a bioreactor comprised of thin film composite-forward osmosis (TFC-FO) and polyether sulfone-microfiltration (PES-MF) membranes. The evaluation was conducted under four different oxic-anoxic cycle patterns. Changes in flux, salinity build-up, and microbial activity (e.g., extracellular polymeric substances (EPS) were assessed. Over the course of a 34 d test, the OMBR-MF hybrid system achieved high removal of total organic carbon (TOC) (86-92%), total nitrogen (TN) (63-76%), and PO4-P (57-63%). The oxic-anoxic cycle time of 0.5-1.5 h was identified to be the best operating condition. Incorporation of MF membrane effectively alleviated salinity build-up in the reactor, allowing stable system operation.
Collapse
Affiliation(s)
- Nirenkumar Pathak
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Post Box 129, Broadway, NSW, 2007, Australia
| | - Sherub Phuntsho
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Post Box 129, Broadway, NSW, 2007, Australia.
| | - Van Huy Tran
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Post Box 129, Broadway, NSW, 2007, Australia
| | - M A H Johir
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Post Box 129, Broadway, NSW, 2007, Australia
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - TorOve Leiknes
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Takahiro Fujioka
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Ho Kyong Shon
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Post Box 129, Broadway, NSW, 2007, Australia.
| |
Collapse
|
16
|
Li Y, Song Z, Yuan Y, Zhang Q, Zhu H. Rheology improvement in an osmotic membrane bioreactor for waste sludge anaerobic digestion and the implication on agitation energy consumption. BIORESOURCE TECHNOLOGY 2020; 295:122313. [PMID: 31670203 DOI: 10.1016/j.biortech.2019.122313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Sludge rheology is an essential factor for anaerobic digestion (AD) processes to control the agitation energy consumption. In this study, the sludge rheology was characterized for an osmotic membrane bioreactor and a conventional sludge anaerobic digestion reactor as the solid content being increased from 3.5-3.7% to 7.5-7.7%. The flow curves were fitted using different rheological models and the mechanism was discussed. The sludge from the osmotic membrane bioreactor exhibited obviously better rheological properties than that of the conventional reactor at a solid content of 7.5-7.7%. Larger particles induced by less negative zeta potential and higher extracellular polymeric substances, together with the higher conductivity resulted by reverse salt flux in the osmotic membrane bioreactor, improved the sludge rheology due to reduced interactions between particles. As a result, the agitation energy consumption of the osmotic membrane bioreactor can save up to 34-39% compared with the conventional one at total solid content of 7.5-7.7%.
Collapse
Affiliation(s)
- Yunqian Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zheyuan Song
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yuan Yuan
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qianqian Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hongtao Zhu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
17
|
Pramanik BK, Shu L, Jegatheesan V, Bhuiyan MA. Effect of the coagulation/persulfate pre-treatment to mitigate organic fouling in the forward osmosis of municipal wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109394. [PMID: 31434051 DOI: 10.1016/j.jenvman.2019.109394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
The forward osmosis (FO) membrane process has recently established in many applications such as desalination, wastewater reuse, water purification, food processing, resource recovery and sustainable power generation. However, many researchers raise the demand for systematic investigation on FO membrane fouling, which leads to reduced flux yield. In this study, the effect of coagulation/persulfate as a feed pre-treatment was used to mitigate FO organic fouling during municipal wastewater treatment, and compared with a control coagulation and potassium persulfate pre-treatments. Mass balance results using size exclusion chromatography exhibited that the decrease in the flux with consecutive filtration cycles was likely due to humic-like molecules in the feedwater. Coagulation/persulfate contributed to a more significant flux improvement than stand-alone coagulation or persulfate pre-treatment, resulting in a smaller amount of organics attachment to the membrane. A better flux enhancement by coagulation/persulfate was again evidenced by a higher decrease in the attachment of reversible and irreversible organic foulants on the membrane surface. This study identified the major organic components responsible for FO fouling and established the potential of coagulation/persulfate pre-treatment for reducing organic fouling of FO membrane during municipal wastewater treatment.
Collapse
Affiliation(s)
| | - Li Shu
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | | | | |
Collapse
|
18
|
Recent Progresses of Forward Osmosis Membranes Formulation and Design for Wastewater Treatment. WATER 2019. [DOI: 10.3390/w11102043] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Production of potable water or reclaimed water with higher quality are in demand to address water scarcity issues as well as to meet the expectation of stringent water quality standards. Forward osmosis (FO) provides a highly promising platform for energy-efficient membrane-based separation technology. This emerging technology has been recognized as a potential and cost-competitive alternative for many conventional wastewater treatment technologies. Motivated by its advantages over existing wastewater treatment technologies, the interest of applying FO technology for wastewater treatment has increased significantly in recent years. This article focuses on the recent developments and innovations in FO for wastewater treatment. An overview of the potential of FO in various wastewater treatment application will be first presented. The contemporary strategies used in membrane designs and fabrications as well as the efforts made to address membrane fouling are comprehensively reviewed. Finally, the challenges and future outlook of FO for wastewater treatment are highlighted.
Collapse
|