1
|
Fernandez M, Callegari EA, Paez MD, González PS, Agostini E. Functional response of Acinetobacter guillouiae SFC 500-1A to tannery wastewater as revealed by a complementary proteomic approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118333. [PMID: 37320920 DOI: 10.1016/j.jenvman.2023.118333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/22/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
Acinetobacter guillouiae SFC 500-1 A is a promising candidate for the bioremediation of tannery wastewater. In this study, we applied shotgun proteomic technology in conjunction with a gel-based assay (Gel-LC) to explore the strain's intracellular protein profile when grown in tannery wastewater as opposed to normal culture conditions. A total of 1775 proteins were identified, 52 of which were unique to the tannery wastewater treatment. Many of them were connected to the degradation of aromatic compounds and siderophore biosynthesis. On the other hand, 1598 proteins overlapped both conditions but were differentially expressed in each. Those that were upregulated in wastewater (109) were involved in the processes mentioned above, as well as in oxidative stress mitigation and intracellular redox state regulation. Particularly interesting were the downregulated proteins under the same treatment (318), which were diverse but mainly linked to the regulation of basic cellular functions (replication, transcription, translation, cell cycle, and wall biogenesis); metabolism (amino acids, lipids, sulphate, energetic processes); and other more complex responses (cell motility, exopolysaccharide production, biofilm formation, and quorum sensing). The findings suggest that SFC 500-1 A engages in survival and stress management strategies to cope with the toxic effects of tannery wastewater, and that such strategies may be mostly oriented at keeping metabolic processes to a minimum. Altogether, the results might be useful in the near future to improve the strain's effectiveness if it will be applied for bioremediation.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), 5800, Río Cuarto, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Río Cuarto, Córdoba, Argentina.
| | - Eduardo A Callegari
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA.
| | - María D Paez
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA.
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), 5800, Río Cuarto, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Río Cuarto, Córdoba, Argentina.
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), 5800, Río Cuarto, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
2
|
Fernandez M, Gómez RJ, González PS, Barroso CN, Paisio CE. Sequential application of activated sludge and phytoremediation with aquatic macrophytes on tannery effluents: in search of a complete treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27718-3. [PMID: 37204583 DOI: 10.1007/s11356-023-27718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
Tannery effluents with a high organic matter load (indicated by their COD level) have to be treated before they are discharged, so as to minimize their negative impact on the environment. Using field mesocosm systems, this study evaluated the feasibility of treating such effluents through bioaugmentation with activated sludge, followed by phytoremediation with aquatic macrophytes (Lemnoideae subfamily). Regardless of its quality, the activated sludge was able to remove approximately 77% of the COD from effluents with a low initial organic load (up to 1500 mg/L). The macrophytes then enhanced removal (up to 86%), so the final COD values were permissible under the current legislation for effluent discharge. When the initial organic load in the undiluted effluents was higher (around 3000 mg/L), the COD values obtained after consecutive bioaugmentation and phytoremediation were close to the legally allowed limits (583 mg/L), which highlights the potential of phytoremediation as a tertiary treatment. This treatment also brought total coliform counts down to legally acceptable values, without plant biomass decreasing over time. Moreover, the plant biomass remained viable and capable of high COD removal efficiency (around 75%) throughout two additional reuse cycles. These findings indicate that the efficiency of the biological treatments assayed here depends largely on the initial organic load in the tannery effluents. In any case, the sequential application of activated sludge and aquatic macrophytes proved to be a successful alternative for remediation.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular- FCEFQyN, Universidad Nacional de Río Cuarto, UNRC, 5800 Río Cuarto, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Río Cuarto, Córdoba, Argentina
| | - Roxana J Gómez
- Departamento de Biología Molecular- FCEFQyN, Universidad Nacional de Río Cuarto, UNRC, 5800 Río Cuarto, Córdoba, Argentina
| | - Paola S González
- Departamento de Biología Molecular- FCEFQyN, Universidad Nacional de Río Cuarto, UNRC, 5800 Río Cuarto, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Río Cuarto, Córdoba, Argentina
| | - Cintia N Barroso
- Departamento de Biología Molecular- FCEFQyN, Universidad Nacional de Río Cuarto, UNRC, 5800 Río Cuarto, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Río Cuarto, Córdoba, Argentina
| | - Cintia E Paisio
- Departamento de Biología Molecular- FCEFQyN, Universidad Nacional de Río Cuarto, UNRC, 5800 Río Cuarto, Córdoba, Argentina.
- Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
3
|
Chaudhary P, Beniwal V, Umar A, Kumar R, Sharma P, Kumar A, Al-Hadeethi Y, Chhokar V. In vitro microcosm of co-cultured bacteria for the removal of hexavalent Cr and tannic acid: A mechanistic approach to study the impact of operational parameters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111484. [PMID: 33120265 DOI: 10.1016/j.ecoenv.2020.111484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Industrial wastes, for instance, tannery wastes are rich soups of resistant and bioremediation-potent bacteria. In the present work, Chromium (Cr) and tannic acid (TA) resistance bacterial strains were isolated from tannery effluent and identified as Bacillus subtilis (MCC 3275) and Bacillus safensis (MCC 3283) based on its 16S Ribosomal RNA homology. Hexavalent Cr is highly toxic and mutagenic due to its high mobility and reactivity. Whereas, TA is known to inhibit enzyme activity, substrate deprivation, and interaction with membranes and matrix-metal ions. The developed In vitro co-cultured microcosm of B. subtilis and B. safensis was able to remove Cr(VI) up to 95% and TA up to 23%. The bacteria cultures separately were able to degrade Cr(VI) to 88% by B. subtilis and 91% by B. safensis and TA up to 27%. Plackett Burman design (PBD) followed by Response surface methodology (RSM) was applied for the optimization of physio-chemical parameters. The optimized conditions for co-culture development were recorded as K2HPO4 = 0.2 g/L, MgSO4 = 0.2 g/L, NH4Cl = 0.5 g/L, glucose - 0.2 g/L, TA - 5%, Cr = 200 ppm, incubation period of 96 h, agitation speed of 110 rpm, pH = 5.0, temperature= 30 °C and inoculum size = 3%. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) revealed the thorough mechanism of cellular uptake followed by degradation of Cr(VI) and TA. The efficiency of co-culture for other heavy metals was observed as follows: Zn 65%, Pb 63%, Cd 65%, and Ni 65%. Bioremediation using bacteria is an economical and environmentally better alternative to conventional remediation methods. The isolated bacteria are useful in the effluent treatment of tannery or related industries and in metal recovery in mining processes.
Collapse
Affiliation(s)
- Prachi Chaudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Vikas Beniwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India.
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia.
| | - Raman Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Priyanka Sharma
- Department of Environment Studies, Panjab University, Sector-14, Chandigarh 160014, India
| | - Anil Kumar
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana, India
| | - Yas Al-Hadeethi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vinod Chhokar
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana, India
| |
Collapse
|
4
|
Pereira PP, Fernandez M, Cimadoro J, González PS, Morales GM, Goyanes S, Agostini E. Biohybrid membranes for effective bacterial vehiculation and simultaneous removal of hexavalent chromium (CrVI) and phenol. Appl Microbiol Biotechnol 2021; 105:827-838. [PMID: 33394154 DOI: 10.1007/s00253-020-11031-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/14/2020] [Accepted: 11/22/2020] [Indexed: 10/22/2022]
Abstract
The aim of the present study was to obtain an effective vehiculation system in which bacterial agents could maintain viability improving their removal capacity. Herein, we present a novel biohybrid membrane of polymeric nanofibers and free-living bacteria for the simultaneous removal of pollutants. In this system, bacteria are free within the pores between the nanofibers and adsorbed to the surface of the membranes. Association between bacteria and the membranes was performed through a self-formulated medium, and the presence of the bacteria in the polymeric matrix was evidenced through atomic force microscopy (AFM). Biohybrid membranes associated with the remediation agents Bacillus toyonensis SFC 500-1E and Acinetobacter guillouiae SFC 500-1A promoted a reduction of up to 2.5 mg/L of hexavalent chromium and up to 200 mg/L of phenol after 24 h of treatment in synthetic medium containing the contaminants. Similarly, more than 46% of the hexavalent chromium and all of the phenol content were removed after treatment of a tannery effluent with initial concentrations of 7 mg/L of Cr(VI) and 305 mg/L of phenol. Counts of the remediation agents from the membranes were always above 1.107 CFU/g, also in the reutilization assays performed without reinoculation. Biohybrid membranes were hydrolysis-resistant, reusable, and effective in the simultaneous removal of contaminants for more than 5 cycles. Viability of the microorganisms was maintained after long-term storage of the membranes at 4 °C, without the use of microbiological media or the addition of cryoprotectants. Graphical abstract KEY POINTS: • Polymeric membranes were effectively associated with the SFC 500-1 remediation consortium • Biohybrid membranes removed hexavalent chromium and phenol from different matrices • Removal of contaminants was achieved in many successive cycles without reinoculation.
Collapse
Affiliation(s)
- Paola P Pereira
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800, Rio Cuarto, CP, Argentina.,Instituto de Biotecnología Ambiental y Salud, INBIAS-CONICET, Río Cuarto, Argentina
| | - Marilina Fernandez
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800, Rio Cuarto, CP, Argentina.,Instituto de Biotecnología Ambiental y Salud, INBIAS-CONICET, Río Cuarto, Argentina
| | - Jonathan Cimadoro
- Laboratorio de Polímeros y Materiales Compuestos, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Física de Buenos Aires IFIBA, CONICET, Buenos Aires, Argentina
| | - Paola S González
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800, Rio Cuarto, CP, Argentina.,Instituto de Biotecnología Ambiental y Salud, INBIAS-CONICET, Río Cuarto, Argentina
| | - Gustavo M Morales
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Rio Cuarto, Argentina.,Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados, IITEMA-CONICET, Río Cuarto, Argentina
| | - Silvia Goyanes
- Laboratorio de Polímeros y Materiales Compuestos, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Física de Buenos Aires IFIBA, CONICET, Buenos Aires, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800, Rio Cuarto, CP, Argentina. .,Instituto de Biotecnología Ambiental y Salud, INBIAS-CONICET, Río Cuarto, Argentina.
| |
Collapse
|
5
|
Fernandez M, Pereira PP, Agostini E, González PS. Impact assessment of bioaugmented tannery effluent discharge on the microbiota of water bodies. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:973-986. [PMID: 32556791 DOI: 10.1007/s10646-020-02237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2020] [Indexed: 05/09/2023]
Abstract
Effluents are commonly discharged into water bodies, and in order for the process to be as environmentally sound as possible, the potential effects on native water communities must be assessed alongside the quality parameters of the effluents themselves. In the present work, changes in the bacterial diversity of streamwater receiving a tannery effluent were monitored by high-throughput MiSeq sequencing. Physico-chemical and microbiological parameters and acute toxicity were also evaluated through different bioassays. After the discharge of treated effluents that had been either naturally attenuated or bioaugmented, bacterial diversity decreased immediately in the streamwater samples, as evidenced by the over-representation of taxa such as Brachymonas, Arcobacter, Marinobacterium, Myroides, Paludibacter and Acinetobacter, typically found in tannery effluents. However, there were no remarkable changes in diversity over time (after 1 day). In terms of the physico-chemical and microbiological parameters analyzed, chemical oxygen demand and total bacterial count increased in response to discharge of the treated effluents. No lethal effects were observed in Lactuca sativa L. seeds or Rhinella arenarum embryos exposed to the streamwater that had received the treated effluents. All of these results contribute to the growing knowledge about the environmental safety of effluent discharge procedures.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, FCEFQyN, INBIAS-CONICET, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| | - Paola P Pereira
- Departamento de Biología Molecular, FCEFQyN, INBIAS-CONICET, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, INBIAS-CONICET, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina.
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, INBIAS-CONICET, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| |
Collapse
|