1
|
Waleed S, Haroon M, Ullah N, Tuzen M, Rind IK, Sarı A. A comprehensive review on advanced trends in treatment technologies for removal of Bisphenol A from aquatic media. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:83. [PMID: 39707071 DOI: 10.1007/s10661-024-13460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Toxic environmental pollutants are considered to be posed a major threat to human and aquatic systems. The fast advancement of the petrochemical and chemical industries has woken up rising worries concerning the pollution of water by contaminants including phenolic Bisphenol A (BPA), an endocrine-disrupting chemical (EDC). The intermediate BPA used in synthesis of certain plastics, polycarbonate polymers, polysulfone, and epoxy resins of various polyesters. Due to potential health risks, severe toxicity, and widespread distribution, there is an urgent need to develop efficient techniques for the removal of BPA. Therefore, advance management for the active elimination of BPA prior to its release into the water sources is of serious concern. Degradation, membrane separation, adsorption, and biological treatments have been extensively examined as they are easy to operate and cost-effective for effective BPA removal. In this review, we summarized the mechanism and performance for removal of BPA by several sorbents, including natural polymers, natural inorganic minerals, porous and carbon-based materials. Comparative results revealed that composite materials and modified adsorbents have good performances for removal of BPA. Furthermore, kinetic study investigating adsorption mechanisms was also discussed. Hazardous quantities of such types of chemicals in various samples have thus been the subject of increasing concern of investigation. This review clarified the extensive literature regarding the major health effects of BPA and its advanced treatment technologies including biological treatment by natural and synthetic materials have been discussed briefly. It delivers regulation for future development and research from the aspects of materials functionalization, development of methods, and mechanism investigation that directing to stimulate developments for removal of emerging contaminants.
Collapse
Affiliation(s)
- Sangeen Waleed
- Department of Chemistry, University of Gwadar, Balochistan, 92600, Pakistan
| | - Muhammad Haroon
- Department of Chemistry, University of Gwadar, Balochistan, 92600, Pakistan
| | - Naeem Ullah
- Department of Chemistry, University of Gwadar, Balochistan, 92600, Pakistan
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpaşa University, 60250, Tokat, Turkey
| | - Mustafa Tuzen
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpaşa University, 60250, Tokat, Turkey
| | - Imran Khan Rind
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan.
- Department of Metallurgical and Material Engineering, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | - Ahmet Sarı
- Department of Metallurgical and Material Engineering, Karadeniz Technical University, 61080, Trabzon, Turkey
- Interdisciplinary Research Center of Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
2
|
Combined Natural Mineral@ZnCoO System for Photocatalytic Degradation of Malachite Green Under Visible Radiation. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
3
|
Wang L, Lü K, Chang Y, Cao X, Huo Q. Mesoporous carbon material prepared from sewage sludge hydrochar using Pluronic F127 as template for efficient removal of phenolic compounds: Experimental study and mechanism interpretation via advanced statistical physics model. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116841. [PMID: 36436439 DOI: 10.1016/j.jenvman.2022.116841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Mesoporous carbon material (MCM) with rich ether surface group was prepared from sewage sludge hydrochar using Pluronic F127 as template under pyrolysis activation, which provided an energy-efficient method to promote the resource utilization of sewage sludge as adsorbents for phenols removal from water. The MCM possessed high surface area (549 m2/g), abundant mesopores (average width 3.81 nm) and well-developed graphite structure. Acidic conditions and low temperatures favored the adsorption of phenolic compounds. The quick adsorption process of reaching over 85% of the capacity in the first 10 min and intraparticle diffusion as primary rate-limiting step were observed for all phenolic compounds. Advanced statistical physics analysis was used successfully to interpret the adsorption mechanism of phenols onto MCM and revealed a multi-molecular monolayer adsorption process primarily through negative charge-assisted hydrogen bond interaction where the ether functional group contributed to the predominant active sites. The adsorption capacity of phenolic compounds depended upon the number of molecules adsorbed per ether active site and the available density of ether bond group on the surface of MCM. 2,4,6-trichlorophenol showed a highest adsorption priority to occupy the limited ether active sites and its adsorption capacity reached 0.49 mmol/g, while p-nitrophenol exhibited a maximum number of molecules adsorbed on the single ether active site, showing an adsorption capacity of 0.42 mmol/g. The synergistic effect of multi-interactions mechanisms resulted in phenolic compounds removal with adsorption energies lower than 30 kJ/mol. This prepared MCM adsorbent is promising for application in treatment of water polluted by phenols.
Collapse
Affiliation(s)
- Liping Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China.
| | - Kai Lü
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Yuzhi Chang
- Jining Environmental Monitoring Center, Ulanqab, 012000, Inner Mongolia, China.
| | - Xinshuai Cao
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Qing Huo
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| |
Collapse
|
4
|
Rezazadeh N, Danesh S, Eftekhari M, Farahmandzadeh M. Application of graphene oxide and its derivatives on the adsorption of a cationic surfactant (interaction mechanism, kinetic, isotherm curves and thermodynamic studies). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Sahu RL, Dash RR, Pradhan PK. A study on adsorption of anionic surfactant from water during riverbank filtration. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Ifguis O, Ziat Y, Ammou F, Bouhdadi R, Mbarki M, Benchagra M. Theorithecal and experimental study on the thermodynamic parameters and adsorption of methylene blue on “Argania shells” in industrial waters. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
7
|
Yang L, Shang J, Dou B, Lan J, Zhang C, Zou R, Xiao H, Lin S. CO 2-responsive functional cotton fibers decorated with Ag nanoparticles for "smart" selective and enhanced dye adsorption. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128327. [PMID: 35093744 DOI: 10.1016/j.jhazmat.2022.128327] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Novel Ag nanoparticles (NPs) decorated CO2-responsive cotton fiber (PCCF@Ag) as eco-friendly adsorbent was prepared via in-situ growth of Ag NPs on the poly(2-(dimethylamino) ethyl methacrylate-co-4-acryloyloxybenzophenone) coated cotton fiber. The as-prepared PCCF@Ag displayed excellent adsorption performance toward both anionic and cationic dyes with or without CO2 stimulation, even under a wide range of pH from 3 to 11. The maximum adsorption capacities of the as-prepared PCCF@Ag toward anionic dye (1538.5 mg g-1 for MO) and cationic dyes (944.0 mg g-1 for MEB and 415.6 mg g-1 for NR) were satisfactory. The adsorption processes were described better by the Langmuir isotherm and pseudo-second-order kinetic models, respectively. Notably, upon CO2 stimulation, the PCCF@Ag exhibited significantly enhanced adsorption capacity toward anionic dyes, following ultrafast adsorption rate, which made the PCCF@Ag could selectively adsorb anionic dyes from mixture because of greatly different adsorption rates between anionic dyes (adsorption equilibrium within 2 min) and cationic dyes (adsorption equilibrium over 12 h). Additionally, the PCCF@Ag could maintain over 91.0% of adsorption capacity even after ten cycles, indicating its outstanding reusability. Meanwhile, the as-obtained PCCF@Ag exhibited excellent antibacterial activity. Overall, the as-obtained PCCF@Ag could be considered as a promising dye scavenger for wastewater remediation.
Collapse
Affiliation(s)
- Lin Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Jiaojiao Shang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Baojie Dou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jianwu Lan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Chenxi Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Rui Zou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Hongyan Xiao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Shaojian Lin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
8
|
Zhang KN, Wang CZ, Lü QF, Chen MH. Enzymatic hydrolysis lignin functionalized Ti 3C 2T x nanosheets for effective removal of MB and Cu 2+ ions. Int J Biol Macromol 2022; 209:680-691. [PMID: 35413323 DOI: 10.1016/j.ijbiomac.2022.04.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/26/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022]
Abstract
Functionalized two-dimensional Ti3C2Tx (TN-EHL) was prepared as an effective adsorbent for removal of methylene blue dye (MB) and copper ions (Cu2+). Enzymatic hydrolysis lignin (EHL), a reproducible natural resource, was used to functionalize the Ti3C2Tx nanosheets. EHL can not only introduce active functional groups into TN-EHL but also prevent the oxidation of Ti3C2Tx, thus promoting the adsorption performance of TN-EHL. The maximum adsorption capacities of TN-EHL50 (in which the EHL content is 50 wt%) for MB and Cu2+ were 293.7 mg g-1 and 49.96 mg g-1, respectively. The higher correlation coefficients (R2) of MB (0.9996) and Cu2+ (0.9995) indicating that their adsorption processes can be described by the pseudo-second-order kinetic model. The MB adsorption data fit the Freundlich isotherm with R2 of 0.9953, whereas the Cu2+ ions adsorption data fit the Langmuir isotherm with R2 of 0.9998. The thermodynamic analysis indicates that the adsorption process of MB and Cu2+ on TN-EHL50 is spontaneous and endothermic. Significantly, the Cu2+ ions were reduced to Cu2O and CuO particles during the adsorption process. Therefore, TN-EHL has a great potential as an environmentally friendly adsorbent for MB removal and recovery of Cu2+ ions from wastewater.
Collapse
Affiliation(s)
- Kai-Ning Zhang
- College of Materials Science and Engineering, Fuzhou University, 2 Wulongjiang North Avenue, Fuzhou 350108, China
| | - Cheng-Zhen Wang
- College of Materials Science and Engineering, Fuzhou University, 2 Wulongjiang North Avenue, Fuzhou 350108, China
| | - Qiu-Feng Lü
- College of Materials Science and Engineering, Fuzhou University, 2 Wulongjiang North Avenue, Fuzhou 350108, China.
| | - Ming-Hui Chen
- College of Materials Science and Engineering, Fuzhou University, 2 Wulongjiang North Avenue, Fuzhou 350108, China
| |
Collapse
|
9
|
Preparation of effective green sorbents using O. Princeps alga biomass with different composition of amine groups: Comparison to adsorption performances for removal of a model acid dye. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Su J, Chen H, Wang J, Yang Q. Enhanced dechlorination of carbon tetrachloride by Ni-doped zero-valent iron nanoparticles @ magnetic Fe3O4 (Ni4/Fe@Fe3O4) nanocomposites. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Izevbekhai OU, Gitari WM, Tavengwa NT, Ayinde WB, Mudzielwana R. Synthesis and evaluation of the oil removal potential of 3-bromo-benzimidazolone polymer grafted silica gel. RSC Adv 2021; 11:11356-11363. [PMID: 35423660 PMCID: PMC8695859 DOI: 10.1039/d0ra10848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/08/2021] [Indexed: 11/21/2022] Open
Abstract
This work reports the synthesis of 3-bromo-benzimidazolone using melt condensation, its polymerization and functionalization on silica which was extracted from diatomaceous earth in our previous work. The synthesized compounds were characterized using FTIR, NMR, SEM-EDS and TEM. The FTIR and NMR spectra of the synthesized benzimidazolones showed the compounds to have several functional groups: A band due to Si-O-C at 1085.41 cm-1, a broad band at 3380 cm-1 and chemical shifts: positive distortionless enhancement by polarization transfer (DEPT) 13C peaks (indicating lack of CH2 and CH3 groups), 1H NMR - 11.053 ppm (N-H), 7.086 ppm (Ar-H); 13C NMR - 155.34 ppm (C[double bond, length as m-dash]O), 101.04 ppm (C-Br) characteristic of benzimidazolones. SEM-EDS of the functionalized silica showed a rough irregular morphology with Si and O as the major elements. Carbon was also present indicating that silica was successfully functionalized with 3-bromo-benzimidazolone and TEM showed interconnected smear-like particles arranged irregularly. The functionalized silica was then applied in the treatment of oily wastewater and factors like initial oil concentration, adsorption dosage and time were optimized using the central composite design of response surface methodology in the design expert software. The amount of oil adsorbed was obtained by quantifying the total organic carbon using TOC test kits. Results showed that the optimum conditions for oil removal were 6650 mg L-1 oil concentration, with adsorbent dosage of 0.004 g and a contact time of 16 h. Under these conditions, the percentage adsorption was 97.9% with a desirability of 0.99. The materials were therefore seen to be applicable to field wastewaters.
Collapse
Affiliation(s)
- Oisaemi Uduagele Izevbekhai
- Environmental Remediation and Nano Sciences Research Group, School of Environmental Sciences, University of Venda Private Bag X5050, Thohoyandou 0950 South Africa
| | - Wilson Mugera Gitari
- Environmental Remediation and Nano Sciences Research Group, School of Environmental Sciences, University of Venda Private Bag X5050, Thohoyandou 0950 South Africa
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, University of Venda Private Bag X5050, Thohoyandou 095 0 South Africa
| | - Wasiu Babatunde Ayinde
- Environmental Remediation and Nano Sciences Research Group, School of Environmental Sciences, University of Venda Private Bag X5050, Thohoyandou 0950 South Africa
| | - Rabelani Mudzielwana
- Environmental Remediation and Nano Sciences Research Group, School of Environmental Sciences, University of Venda Private Bag X5050, Thohoyandou 0950 South Africa
| |
Collapse
|
12
|
Fu H, Hou Y, Sang H, Mu T, Lin X, Peng Z, Li P, Liu J. Carbon dioxide capture by new
DBU
‐based
DES
: The relationship between ionicity and absorptive capacity. AIChE J 2021. [DOI: 10.1002/aic.17244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hui Fu
- College of Science China University of Petroleum (East China) Qingdao China
| | - Yunpeng Hou
- College of Chemical Engineering China University of Petroleum (East China) Qingdao China
| | - Haina Sang
- College of Science China University of Petroleum (East China) Qingdao China
| | - Tiancheng Mu
- Department of Chemistry Renmin University of China Beijing China
| | - Xufeng Lin
- College of Science China University of Petroleum (East China) Qingdao China
| | - Zhihua Peng
- College of Science China University of Petroleum (East China) Qingdao China
| | - Peng Li
- College of Chemical Engineering China University of Petroleum (East China) Qingdao China
| | - Jinhe Liu
- College of Science China University of Petroleum (East China) Qingdao China
| |
Collapse
|
13
|
An Overview and Evaluation of Highly Porous Adsorbent Materials for Polycyclic Aromatic Hydrocarbons and Phenols Removal from Wastewater. WATER 2020. [DOI: 10.3390/w12102921] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and phenolic compounds had been widely recognized as priority organic pollutants in wastewater with toxic effects on both plants and animals. Thus, the remediation of these pollutants has been an active area of research in the field of environmental science and engineering. This review highlighted the advantage of adsorption technology in the removal of PAHs and phenols in wastewater. The literature presented on the applications of various porous carbon materials such as biochar, activated carbon (AC), carbon nanotubes (CNTs), and graphene as potential adsorbents for these pollutants has been critically reviewed and analyzed. Under similar conditions, the use of porous polymers such as Chitosan and molecularly imprinted polymers (MIPs) have been well presented. The high adsorption capacities of advanced porous materials such as mesoporous silica and metal-organic frameworks have been considered and evaluated. The preference of these materials, higher adsorption efficiencies, mechanism of adsorptions, and possible challenges have been discussed. Recommendations have been proposed for commercialization, pilot, and industrial-scale applications of the studied adsorbents towards persistent organic pollutants (POPs) removal from wastewater.
Collapse
|
14
|
Alipanahpour Dil E, Asfaram A, Goudarzi A, Zabihi E, Javadian H. Biocompatible chitosan-zinc oxide nanocomposite based dispersive micro-solid phase extraction coupled with HPLC-UV for the determination of rosmarinic acid in the extracts of medical plants and water sample. Int J Biol Macromol 2020; 154:528-537. [PMID: 32194117 DOI: 10.1016/j.ijbiomac.2020.03.132] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/14/2020] [Accepted: 03/14/2020] [Indexed: 12/24/2022]
Abstract
In the present research, a procedure was described for the recovery of rosmarinic acid (RA) from medical extract samples using chitosan‑zinc oxide nanoparticles as a biocompatible nanocomposite (CS-ZnO-NC). The dispersive micro-solid phase extraction (D-μ-SPE) of RA from the medical extract samples was investigated by using the prepared biocompatible composite as a solid phase. The HPLC-UV method was used for measuring the extracted RA. The important variables (pH, biocompatible composite mass, contact time, and volume of eluent) associated with the extraction process were analyzed by the application of central composite design (CCD). The achieved optimum values for the mentioned variables were 7.0, 10 mg, 4 min, and 180 μL, respectively. The extraction recovery (99.68%) obtained from the predicted model was in agreement with the experimental data (98.22 ± 1.33%). In addition, under the obtained optimum conditions and over the concentration in the range of 2-3500 ng mL-1, a linear calibration curve was obtained with R2 > 0.993. The limit of detection (LOD) and quantification (LOQ) values were computed, and the obtained ranges were respectively from 0.060 to 0.089 ng mL-1 and 0.201 to 0.297 ng mL-1. In addition, the enrichment factors were obtained in the range of 93.7-110.5 with preconcentration factor of 83.3. Therefore, the D-μ-SPE-HPLC-UV method could be used for analyzing RA in the samples of the extracts obtained from the medical plants and water with the recovery values of the analyte in the range of 96.6%-105.4% and the precision with relative standard deviation <5.7%.
Collapse
Affiliation(s)
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Alireza Goudarzi
- Department of Polymer Engineering, Golestan University, PO Box 491888369, Gorgan, Iran
| | - Erfan Zabihi
- Department of Polymer Engineering, Golestan University, PO Box 491888369, Gorgan, Iran
| | - Hamedreza Javadian
- Department of Chemical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
15
|
Occurrence, quantification, and adsorptive removal of nodularin in seawater, wastewater and river water. Toxicon 2020; 180:18-27. [DOI: 10.1016/j.toxicon.2020.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/22/2020] [Accepted: 03/28/2020] [Indexed: 11/21/2022]
|