1
|
Sun P, Liu H, Zhao Y, Hao N, Deng Z, Zhao W. A novel data-driven screening method of antidepressants stability in wastewater and the guidance of environmental regulations. ENVIRONMENT INTERNATIONAL 2025; 198:109427. [PMID: 40188602 DOI: 10.1016/j.envint.2025.109427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/05/2025] [Accepted: 03/29/2025] [Indexed: 04/08/2025]
Abstract
Wastewater-based epidemiology (WBE) represents a powerful technique for quantifying the attenuation characteristics and consumption of pharmaceuticals. In addition to WBE, no further methods have been developed to assess the wastewater stability related to antidepressants (ADs). In this study, the biodegradability, solubility, and adsorption or partition of 66 ADs were objectively scored according to the relevant guidelines of the Organisation for Economic Cooperation and Development. An assessment framework and the MSSL-RealFormer classification model of ADs wastewater stability were constructed based on physicochemical properties to predict the ADs wastewater stability and the quantitative structure-activity relationship. The constructed MSSL-RealFormer classification model exhibited a markedly higher prediction accuracy than traditional methods. Furthermore, 15 high-stable ADs in wastewater with low biodegradability, high solubility, and low adsorption or partition were identified. SHapley Additive exPlanation method demonstrated that group hydrophobicity, electrostatic and van der Waals forces exerted a significant influence on the ADs wastewater stability. And molecular stability was found to be significantly correlated with the ADs wastewater stability. A combination of density functional theory and MSSL-RealFormer classification model was employed to identify 17 high-stable transformation products of nine medium- and low-stable ADs in wastewater. The Ecological Structure Activity Relationships model demonstrated that bupropion, tapentadol and chlorpheniramine exhibited significant acute toxicity to the aquatic food chain. In this study, a novel deep learning model was constructed to rapidly screen the correlation between the ADs wastewater stability and their molecular structures. It is anticipated to prove a favorable tool for optimizing the wastewater stability screening of pharmaceuticals.
Collapse
Affiliation(s)
- Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Huaishi Liu
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130000, China.
| | - Yuanyuan Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Ning Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Zhengyang Deng
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Singh AK, Abellanas-Perez P, de Andrades D, Cornet I, Fernandez-Lafuente R, Bilal M. Laccase-based biocatalytic systems application in sustainable degradation of pharmaceutically active contaminants. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136803. [PMID: 39672062 DOI: 10.1016/j.jhazmat.2024.136803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
The outflow of pharmaceutically active chemicals (PhACs) exerts a negative impact on biological systems even at extremely low concentrations. For instance, enormous threats to human and aquatic species have resulted from the widespread use of antibiotics in ecosystems, which stimulate the emergence and formation of antibiotic-resistant bacterial species and associated genes. Additionally, it is challenging to eliminate these PhACs by employing conventional physicochemical water treatment techniques. Enzymatic approaches, including laccase, have been identified as a promising alternative to eliminate a broad array of PhACs from water matrices. However, their application in environmental bioremediation is hindered by several factors, including the enzyme's stability and its location in the aqueous environment. Such obstacles may be surmounted by employing laccase immobilization, which enables enhanced stability (including inactivation caused by the substrate), and thus improved catalysis. This review emphasizes the potential hazards of PhACs to aquatic organisms within the detection concentration range of ngL-1 to µgL-1, as well as the deployment of laccase-based multifunctional biocatalytic systems for the environmentally friendly mitigation of anticancer drugs, analgesics/NSAIDs, antibiotics, antiepileptic agents, and beta blockers as micropollutants. This approach could reduce the underlying toxicological consequences. In addition, current developments, potential applications, and viewpoints have focused on computer-assisted investigations of laccase-PhACs binding at enzyme cavities and degradability prediction.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pedro Abellanas-Perez
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, C/ Marie Curie 2, Madrid, Spain
| | - Diandra de Andrades
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, C/ Marie Curie 2, Madrid, Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão, Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Iris Cornet
- BioWAVE research group, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | | | - Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., Gdansk 80-233, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| |
Collapse
|
3
|
Kózka B, Sośnicka A, Nałęcz-Jawecki G, Drobniewska A, Turło J, Giebułtowicz J. Various species of Basidiomycota fungi reveal different abilities to degrade pharmaceuticals and also different pathways of degradation. CHEMOSPHERE 2023; 338:139481. [PMID: 37454990 DOI: 10.1016/j.chemosphere.2023.139481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The presence of pharmaceuticals (PhACs) in the aquatic environment is an emerging problem worldwide. PhACs reach surface water via the effluents of wastewater treatment plants (WWTPs). WWTPs, although able to remove organic pollutants, do not always remove PhACs. Currently, in the treatment of sewage with the activated sludge method, numerous microorganisms are used, mostly bacteria. Nevertheless, these microorganisms are not resistant to many drug contaminants, and some may also pose a risk to human health. White-rot fungi (WRF), which degrade a wide spectrum of environmental pollutants, may be used as an alternative to microorganisms. However, little data exists comparing the removal of various PhACs by different WRF. In this study, we aimed to determine the ability of three WRF Basidiomycota species, Armillaria mellea, Phanerochaete chrysosporium, and Pleurotus ostreatus, to remove PhACs from various therapeutic groups over the course of 1 h-4 days. Additionally, we identified the fungal metabolites of PhACs, proposed the degradation pathways, and assessed the toxicity of the post-culture media. All selected WRF removed PhACs, but the degree of removal depended on WRF species and PhACs type. Antidepressants and immunosuppressants were removed most efficiently by P. ostreatus, cardiovascular drugs and sulfamethoxazole by A. mellea, and erythromycin by P. chrysosporium. The vast differences observed highlight the need for more intensive testing of different WRF species to select the best species for removing pharmaceuticals of interest. The structure of metabolites generated during degradation strongly depended on WRF species, but the most frequent xenobiotic transformations were oxidation and dealkylation. The obtained results gave insight into the substrate specificity of selected WRF while also providing a broad extension of the knowledge of pharmaceutical degradation by A. mellea.
Collapse
Affiliation(s)
- B Kózka
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Poland
| | - A Sośnicka
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Technology and Pharmaceutical Biotechnology, Poland
| | - G Nałęcz-Jawecki
- Medical University of Warsaw, Faculty of Pharmacy, Department of Environmental Health Sciences, Poland
| | - A Drobniewska
- Medical University of Warsaw, Faculty of Pharmacy, Department of Environmental Health Sciences, Poland
| | - J Turło
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Technology and Pharmaceutical Biotechnology, Poland
| | - J Giebułtowicz
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Poland.
| |
Collapse
|
4
|
Hernández Martínez SA, Melchor-Martínez EM, González-González RB, Sosa-Hernández JE, Araújo RG, Rodríguez-Hernández JA, Barceló D, Parra-Saldívar R, Iqbal HMN. Environmental concerns and bioaccumulation of psychiatric drugs in water bodies - Conventional versus biocatalytic systems of mitigation. ENVIRONMENTAL RESEARCH 2023; 229:115892. [PMID: 37084948 PMCID: PMC10114359 DOI: 10.1016/j.envres.2023.115892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The COVID-19 pandemic has brought increments in market sales and prescription of medicines commonly used to treat mental health disorders, such as depression, anxiety, stress, and related problems. The increasing use of these drugs, named psychiatric drugs, has led to their persistence in aquatic systems (bioaccumulation), since they are recalcitrant to conventional physical and chemical treatments typically used in wastewater treatment plants. An emerging environmental concern caused by the bioaccumulation of psychiatric drugs has been attributed to the potential ecological and toxicological risk that these medicines might have over human health, animals, and plants. Thus, by the application of biocatalysis-assisted techniques, it is possible to efficiently remove psychiatric drugs from water. Biocatalysis, is a widely employed and highly efficient process implemented in the biotransformation of a wide range of contaminants, since it has important differences in terms of catalytic behavior, compared to common treatment techniques, including photodegradation, Fenton, and thermal treatments, among others. Moreover, it is noticed the importance to monitor transformation products of degradation and biodegradation, since according to the applied removal technique, different toxic transformation products have been reported to appear after the application of physical and chemical procedures. In addition, this work deals with the discussion of differences existing between high- and low-income countries, according to their environmental regulations regarding waste management policies, especially waste of the drug industry.
Collapse
Affiliation(s)
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico
| | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico
| | - Rafael G Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico
| | | | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDEA-CSIC, Barcelona, Spain; Catalan Institute for Water Research (ICRA-CERCA), Parc Cientific i Tecnològic de la Universitat de Girona, Edifici H(2)O, Girona, Spain; Sustainability Cluster, School of Engineering UPES, Dehradun, India
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico.
| |
Collapse
|
5
|
Efremenko E, Stepanov N, Senko O, Maslova O, Lyagin I, Aslanli A. Progressive Biocatalysts for the Treatment of Aqueous Systems Containing Pharmaceutical Pollutants. Life (Basel) 2023; 13:841. [PMID: 36983996 PMCID: PMC10052509 DOI: 10.3390/life13030841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The review focuses on the appearance of various pharmaceutical pollutants in various water sources, which dictates the need to use various methods for effective purification and biodegradation of the compounds. The use of various biological catalysts (enzymes and cells) is discussed as one of the progressive approaches to solving problems in this area. Antibiotics, hormones, pharmaceuticals containing halogen, nonsteroidal anti-inflammatory drugs, analgesics and antiepileptic drugs are among the substrates for the biocatalysts in water purification processes that can be carried out. The use of enzymes in soluble and immobilized forms as effective biocatalysts for the biodegradation of various pharmaceutical compounds (PCPs) has been analyzed. Various living cells (bacteria, fungi, microalgae) taken as separate cultures or components of natural or artificial consortia can be involved in biocatalytic processes under aerobic or anaerobic conditions. Cells as biocatalysts introduced into water treatment systems in suspended or immobilized form are used for deep biodegradation of PCPs. The potential of combinations of biocatalysts with physical-chemical methods of wastewater treatment is evaluated in relation to the effective removing of PCPs. The review analyzes recent results and the main current trends in the development of biocatalytic approaches to biodegradation of PCPs, the pros and cons of the processes and the biocatalysts used.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
6
|
Mohammadi SA, Najafi H, Zolgharnian S, Sharifian S, Asasian-Kolur N. Biological oxidation methods for the removal of organic and inorganic contaminants from wastewater: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157026. [PMID: 35772531 DOI: 10.1016/j.scitotenv.2022.157026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Enzyme-based bioremediation is a simple, cost-effective, and environmentally friendly method for isolating and removing a wide range of environmental pollutants. This study is a comprehensive review of recent studies on the oxidation of pollutants by biological oxidation methods, performed individually or in combination with other methods. The main bio-oxidants capable of removing all types of pollutants, such as organic and inorganic molecules, from fungi, bacteria, algae, and plants, and different types of enzymes, as well as the removal mechanisms, were investigated. The use of mediators and modification methods to improve the performance of microorganisms and their resistance under harsh real wastewater conditions was discussed, and numerous case studies were presented and compared. The advantages and disadvantages of conventional and novel immobilization methods, and the development of enzyme engineering to adjust the content and properties of the desired enzymes, were also explained. The optimal operating parameters such as temperature and pH, which usually lead to the best performance, were presented. A detailed overview of the different combination processes was also given, including bio-oxidation in coincident or consecutive combination with adsorption, advanced oxidation processes, and membrane separation. One of the most important issues that this study has addressed is the removal of both organic and inorganic contaminants, taking into account the actual wastewaters and the economic aspect.
Collapse
Affiliation(s)
- Seyed Amin Mohammadi
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran
| | - Hanieh Najafi
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran
| | - Sheida Zolgharnian
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Seyedmehdi Sharifian
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran
| | - Neda Asasian-Kolur
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran.
| |
Collapse
|
7
|
Current Challenges for Biological Treatment of Pharmaceutical-Based Contaminants with Oxidoreductase Enzymes: Immobilization Processes, Real Aqueous Matrices and Hybrid Techniques. Biomolecules 2022; 12:biom12101489. [PMID: 36291698 PMCID: PMC9599273 DOI: 10.3390/biom12101489] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
The worldwide access to pharmaceuticals and their continuous release into the environment have raised a serious global concern. Pharmaceuticals remain active even at low concentrations, therefore their occurrence in waterbodies may lead to successive deterioration of water quality with adverse impacts on the ecosystem and human health. To address this challenge, there is currently an evolving trend toward the search for effective methods to ensure efficient purification of both drinking water and wastewater. Biocatalytic transformation of pharmaceuticals using oxidoreductase enzymes, such as peroxidase and laccase, is a promising environmentally friendly solution for water treatment, where fungal species have been used as preferred producers due to their ligninolytic enzymatic systems. Enzyme-catalyzed degradation can transform micropollutants into more bioavailable or even innocuous products. Enzyme immobilization on a carrier generally increases its stability and catalytic performance, allowing its reuse, being a promising approach to ensure applicability to an industrial scale process. Moreover, coupling biocatalytic processes to other treatment technologies have been revealed to be an effective approach to achieve the complete removal of pharmaceuticals. This review updates the state-of-the-art of the application of oxidoreductases enzymes, namely laccase, to degrade pharmaceuticals from spiked water and real wastewater. Moreover, the advances concerning the techniques used for enzyme immobilization, the operation in bioreactors, the use of redox mediators, the application of hybrid techniques, as well as the discussion of transformation mechanisms and ending toxicity, are addressed.
Collapse
|
8
|
Optimization of White-Rot Fungi Mycelial Culture Components for Bioremediation of Pharmaceutical-Derived Pollutants. WATER 2022. [DOI: 10.3390/w14091374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
White-rot fungi can degrade a wide spectrum of environmental pollutants, including pharmaceuticals, which are not efficiently removed from wastewater by conventional methods, e.g., the activated sludge method. However, the treatment of wastewater with the use of fungal cultures (mycoremediation) also has significant limitations: among others, the need to use appropriate, often-expensive culture media. We aimed to screen 18 media ingredients, including seven agrifood byproducts for Armillaria mellea, Phanerochaete chrysosporium and Pleurotus ostreatus in submerged cultures to select the low-cost medium optimal for biomass production and laccase activity. We screened nine mathematic models to describe the relation of fungal growth and the amount of the selected byproduct in media. Finally, we tested the ability of the strain with the highest mycelial growth and enzyme-producing ability in the selected medium to degrade eight drug contaminants. Three media variants composed of byproducts provided both efficient growth and laccase production: corn steep liquor + poplar, dried distillers grains with solubles + poplar and corn steep liquor 50%. Among the investigated growth models, the Han–Levenspiel equation described well the specific growth rate in function of the nominal substrate concentration in one-component media. Pleurotus ostreatus, the fungus with the highest ligninolytic enzyme activity, cultured in medium composed of corn steep liquor, removed six of eight drug contaminants with a removal degree of 20–90% in 48 h. The obtained data on the optimal culture media consisting of insoluble components provide initial data for upscaling the process and designing an appropriate type of bioreactor for the process of removing drug contaminants from water.
Collapse
|