1
|
Liu J, Han Y, Dou X, Liang W. Effect of toluene on m-xylene removal in a biotrickling filter: Performance, biofilm characteristics, and microbial analysis. ENVIRONMENTAL RESEARCH 2024; 245:117978. [PMID: 38142726 DOI: 10.1016/j.envres.2023.117978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
Hydrophobic volatile organic compounds (VOCs) pose a challenge to the removal efficiency in biotrickling filters (BTFs). The addition of relatively hydrophilic substances presents a promising approach for enhancing the elimination of hydrophobic VOCs. In this study, toluene was introduced into the BTF system alongside m-xylene, and their mixing ratios were changed to explore the interactions and mechanisms under different conditions. The result showed that the most pronounced synergistic interaction occurred when the mixing concentration ratio of m-xylene and toluene was 2:1. The removal efficiency (RE) of m-xylene increased from 88% to 97%, and the elimination capacity (EC) of m-xylene changed from 64 to 72 g m-3 h-1. Under this condition, there was a notable increase in biomass, extracellular polymeric substance (EPS) content, and relative hydrophobicity. Microbial diversity was enhanced observably with Berkeleyces and Mycobacterium potentially playing a positive role in co-degradation. Meanwhile, microbial metabolic function prediction indicated a significant enhancement in metabolic functions. Therefore, the introduction of relatively hydrophilic VOCs represents an effective strategy for enhancing the removal of hydrophobic VOCs in the BTFs.
Collapse
Affiliation(s)
- Jia Liu
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China.
| | - Yueyang Han
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China
| | - Xiaona Dou
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China
| | - Wenjun Liang
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
2
|
Wang J, Wu Y, Zhang C, Geng A, Sun Z, Yang J, Xi J, Wang L, Yang B. Effect of weak electrical stimulation on m-dichlorobenzene biodegradation in biotrickling filters: Insights from performance and microbial community analysis. BIORESOURCE TECHNOLOGY 2023; 390:129881. [PMID: 37852508 DOI: 10.1016/j.biortech.2023.129881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
The microbial electrolysis cell coupled with the biotrickling filters (MEC-BTF) was developed for enhancing the biodegradation of gaseous m-dichlorobenzene (m-DCB) through weak electrical stimulation. The maximum removal efficiency and elimination capacity in MEC-BTF were 1.48 and 1.65 times higher than those in open-circuit BTF (OC-BTF), respectively. Weak electrical stimulation had a positive impact on the characteristics of the biofilm. Additionally, microbial community analysis revealed that weak electrical stimulation increased the abundance of key functional genera (e.g., Rhodanobacter and Bacillus) and genes (e.g., catA/E and E1.3.1.32), thereby accelerating reductive dechlorination and ring-opening of m-DCB. Macrogenomic sequencing further revealed that electron transfer pathway in MEC-BTF might be mediated through extracellular electroactive mediators and cytochromes.
Collapse
Affiliation(s)
- Jiajie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yu Wu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Caiyun Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Anqi Geng
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhuqiu Sun
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jiawei Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Liping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Bairen Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
3
|
Cai M, Dong G, Zhou Y, Yang C, Wu H, Guo C, Zhang H, Han Y. Product maturation and antibiotic resistance genes enrichment in food waste digestate and Chinese medicinal herbal residues co-composting. BIORESOURCE TECHNOLOGY 2023; 388:129765. [PMID: 37717706 DOI: 10.1016/j.biortech.2023.129765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
The land application of food waste digestate (FWD) requires a composting process to improve its soil amendment performance and alleviate environmental risks. This study proposed co-composting of Chinese medicinal herbal residues (CMHRs) and FWD as a means to improve the maturation performance and investigated the evolution of antibiotic resistance genes (ARGs). Results demonstrated that CMHRs addition effectively accelerated the maturity of FWD composting to less than 35 days, remarkably removed its remaining antibiotics by 83.0% and promoted the formation of humification substances. However, both quantitative PCR and 16S rRNA sequencing analysis indicated that a significant enrichment of ARGs and mobile genetic elements including frA1, tetX, blaTEM, InuB-01, aadA2-02 and IntI-1 was observed via the co-composting of FWD and CMHRs. These results indicated that the land application of products obtained from FWD and CMHRs co-composting is at risk of spreading ARGs, although the composting process could be significantly improved.
Collapse
Affiliation(s)
- Mengyu Cai
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Guihan Dong
- School of Economics and Management, Yanshan University, Qinhuangdao 066004, China
| | - Yuting Zhou
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Caiyun Yang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Hao Wu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Chunyu Guo
- Jintong Internet of Things (Suzhou), Co. Ltd, Suzhou 215000, China
| | - Haoran Zhang
- Comprehensive Administrative Law Enforcement Detachment, Bureau of Marine and Fishery of Qinhuangdao, Qinhuangdao 066004, China
| | - Ying Han
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
4
|
Zhu Q, Wu P, Chen B, Wu Q, Cao F, Wang H, Mei Y, Liang Y, Sun X, Chen Z. Improving NH 3 and H 2S removal efficiency with pilot-scale biotrickling filter by co-immobilizing Kosakonia oryzae FB2-3 and Acinetobacter baumannii L5-4. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33181-33194. [PMID: 36474037 DOI: 10.1007/s11356-022-24426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
In this study, two NH4+-N and S2- removal strains, namely, Kosakonia oryzae (FB2-3) and Acinetobacter baumannii (L5-4), were isolated from the packing materials in a long-running biotrickling filter (BTF). The removal capacities of combined FB2-3 and L5-4 (FB2-3 + L5-4) toward 100 mg L-1 of NH4+-N and 200 mg L-1 of S2- reached 97.31 ± 1.62% and 98.57 ± 1.12% under the optimal conditions (32.0 °C and initial pH = 7.0), which were higher than those of single strain. Then, FB2-3 and L5-4 liquid inoculums were prepared, and their concentrations respectively reached 1.56 × 109 CFU mL-1 and 1.05 × 109 CFU mL-1 by adding different resuspension solutions and protective agents after 12-week storage at 25 °C. Finally, pilot-scale BTF test showed that NH3 and H2S in the real exhaust gases from a pharmaceutical factory were effectively removed with removal rates > 87% and maximum elimination capacities were reached 136 g (NH3) m-3 h-1 and 176 g (H2S) m-3 h-1 at 18 °C-34 °C and pH 4.0-7.0 in the BTF loaded with bamboo charcoal packing materials co-immobilized with FB2-3 and L5-4. After co-immobilization of FB2-3 and L5-4, in the bamboo charcoal packing materials, the new microbial diversity composition contained the dominant genera of Acinetobacter, Mycobacterium, Kosakonia, and Sulfobacillus was formed, and the diversity of entire bacterial community was decreased, compared to the control. These results indicate that FB2-3 and L5-4 have potential to be developed into liquid ready-to-use inoculums for effectively removing NH3 and H2S from exhaust gases in BTF.
Collapse
Affiliation(s)
- Qiuyan Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Pengyu Wu
- College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, People's Republic of China
| | - Budong Chen
- Chuhuan Science and Technology Co., Ltd, Hangzhou, 310000, People's Republic of China
| | - Qijun Wu
- Chuhuan Science and Technology Co., Ltd, Hangzhou, 310000, People's Republic of China
| | - Feifei Cao
- Chuhuan Science and Technology Co., Ltd, Hangzhou, 310000, People's Republic of China
| | - Hao Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuxia Mei
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yunxiang Liang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaowen Sun
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhenmin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
5
|
Chen J, Gao M, Zhao Y, Guo L, Jin C, Ji J, She Z. Nitrogen and sulfamethoxazole removal in a partially saturated vertical flow constructed wetland treating synthetic mariculture wastewater. BIORESOURCE TECHNOLOGY 2022; 358:127401. [PMID: 35660456 DOI: 10.1016/j.biortech.2022.127401] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the removal of nitrogen and sulfamethoxazole (SMX), and the microbial communities in a partially saturated vertical flow constructed wetland (PS-VFCW) fed with synthetic mariculture wastewater operated at different saturated zone depths (SZDs), i.e. 51, 70, and 60 cm. Removal efficiencies were 99.8%-100.0% for COD, 34.1%-100.0% for NH4+-N, 67.8%-97.3% for total inorganic nitrogen (TIN), and 29.8%-57.2% for SMX. Excellent nitrification performance was achieved at the SZDs of 51 and 60 cm. Denitrification performed well at 70 and 60 cm SZDs. The highest TIN removal efficiency (97.3%) was achieved as the SZD was 60 cm. SMX removal was significantly influenced by SZD and was promoted by higher SZD. The removal of organics, nitrogen, and SMX mainly occurred in the unsaturated zone. Ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, denitrifying bacteria, and SMX-degrading bacteria were detected in the unsaturated and saturated zones, and showed an increasing trend in abundance along the depth.
Collapse
Affiliation(s)
- Jinjin Chen
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China.
| |
Collapse
|
6
|
Dou X, Liu J, Qi H, Li P, Lu S, Li J. Synergistic removal of m-xylene and its corresponding mechanism in a biotrickling filter. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Xie L, Yoshida N, Ishii S, Meng L. Isolation and Polyphasic Characterization of Desulfuromonas versatilis sp. Nov., an Electrogenic Bacteria Capable of Versatile Metabolism Isolated from a Graphene Oxide-Reducing Enrichment Culture. Microorganisms 2021; 9:1953. [PMID: 34576847 PMCID: PMC8465243 DOI: 10.3390/microorganisms9091953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/11/2023] Open
Abstract
In this study, a novel electrogenic bacterium denoted as strain NIT-T3 of the genus Desulfuromonas was isolated from a graphene-oxide-reducing enrichment culture that was originally obtained from a mixture of seawater and coastal sand. Strain NIT-T3 utilized hydrogen and various organic acids as electron donors and exhibited respiration using electrodes, ferric iron, nitrate, and elemental sulfur. The strain contained C16:1ω7c, C16:0, and C15:0 as major fatty acids and MK-8, 9, and 7 as the major respiratory quinones. Strain NIT-T3 contained four 16S rRNA genes and showed 95.7% similarity to Desulfuromonasmichiganensis BB1T, the closest relative. The genome was 4.7 Mbp in size and encoded 76 putative c-type cytochromes, which included 6 unique c-type cytochromes (<40% identity) compared to those in the database. Based on the physiological and genetic uniqueness, and wide metabolic capability, strain NIT-T3 is proposed as a type strain of 'Desulfuromonas versatilis' sp. nov.
Collapse
Affiliation(s)
- Li Xie
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Aichi, Japan; (L.X.); (L.M.)
| | - Naoko Yoshida
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Aichi, Japan; (L.X.); (L.M.)
| | - Shun’ichi Ishii
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Kanagawa, Japan;
| | - Lingyu Meng
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Aichi, Japan; (L.X.); (L.M.)
| |
Collapse
|
8
|
Tsui TH, Zhang L, Lim EY, Lee JTE, Tong YW. Timing of biochar dosage for anaerobic digestion treating municipal leachate: Altered conversion pathways of volatile fatty acids. BIORESOURCE TECHNOLOGY 2021; 335:125283. [PMID: 34015564 DOI: 10.1016/j.biortech.2021.125283] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
In this study, the anaerobic digestion (AD) applications of early & late biochar dosage were compared for municipal leachate treatment, with the objective of studying the flexible use of biochar as a mitigation measure for biomethane recovery. In two experimental phases, biochar was favourable for the immediate promotion of AD performances, as revealed by Gompertz's model of reduced lag phases, higher biomethane generation rates, and increased biomethane yields. Irrespective of late biochar dosage, it could still retrieve 89% of the ultimate biomethane potential. Comparing the residual VFAs (volatile fatty acids) compositions, it was found that the fraction of long-chain VFAs accounted for 81% of total VFAs in reactor set of early biochar dosage, while it was only 38% in the reactor of late one. Parallel evidence suggested that the schedule of biochar dosage not only could affect methanogenic responses but also the VFAs conversion pathways.
Collapse
Affiliation(s)
- To-Hung Tsui
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE) 1 CREATE Way, Singapore 138602, Singapore
| | - Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE) 1 CREATE Way, Singapore 138602, Singapore
| | - Ee Yang Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jonathan T E Lee
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE) 1 CREATE Way, Singapore 138602, Singapore
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE) 1 CREATE Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
9
|
Mao L, Tsui TH, Zhang J, Dai Y, Tong YW. System integration of hydrothermal liquefaction and anaerobic digestion for wet biomass valorization: Biodegradability and microbial syntrophy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112981. [PMID: 34102499 DOI: 10.1016/j.jenvman.2021.112981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/27/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Sewage sludge treatment & disposal pose environmental challenges in populated-dense urban environments. Due to its poor digestibility and dewaterability, sewage sludge contains high water content and concentrated nutrients (carbon, nitrogen, and phosphorus) even after conditioning and mechanical thickening. Regarding this, a pretreatment step and downstream anaerobic digestion (AD) are often required. To meet our societal goal towards a circular economy, system integration of hydrothermal pretreatment and AD now present an attractive approach for recovering resources from the wet sewage sludge biomass. In this study, such system integration together with struvite precipitation was applied for valorizing sewage sludge. Firstly, hydrothermal conditions of different temperatures (160 °C-230 °C) and duration (2 h-12 h) were compared to their performance of nutrients solubilization. Subsequently, the hydrothermal condition of 220°C-3 h was selected for further investigations of struvite recovery and bioenergy production. Through AD comparisons, the integrated process improved the ultimate biomethane yield by 38%. Interestingly, a lag phase occurred in the midst of the AD, which indicated the need for microbial acclimatization after the hydrothermal process. The long-term microbial monitoring revealed the efficient biomethane re-generation was closely related to the late enrichment of Syntrophus for potential H2-syntrophy. Therefore, on one hand, this study investigated an efficient and integrated approach of sewage sludge valorization. On other hand, it uncovered the microbial bottlenecks and potential biotechnological means for further system improvement. Further research about nutrients speciation in the integrated system would be desired.
Collapse
Affiliation(s)
- Liwei Mao
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - To-Hung Tsui
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiaotong University, 3 YinlianRoad, Shanghai, 201306, China
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585.
| |
Collapse
|
10
|
Mao L, Tsui TH, Zhang J, Dai Y, Tong YW. Mixing effects on decentralized high-solid digester for horticultural waste: Startup, operation and sensitive microorganisms. BIORESOURCE TECHNOLOGY 2021; 333:125216. [PMID: 33933829 DOI: 10.1016/j.biortech.2021.125216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
This work studied the use of a horizontal high-solid digester for the decentralized anaerobic treatment of horticultural waste (fallen leaves), where the effect of intermittent mixing by a modified double helical ribbon impeller was investigated. Before experimental verification, the flow pattern and theoretical mixing time were first characterized by CFD simulation. Subsequently, three mixing time intervals (i.e., 3 min/3 hr; 18 min/3 hr; 108 min/3 hr) and one control setup (i.e., without mixing) were compared for their performance during start-up and semi-continuous operation. It was found that minimal mixing was necessary for an efficient digester's start-up but increased mixing intensity for semi-continuous operation. The results were further interpreted by correlating the digester performance and microbial communities. Those microorganisms sensitive to increased mixing intensity were highlighted and analysed.
Collapse
Affiliation(s)
- Liwei Mao
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - To-Hung Tsui
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiaotong University, 3 YinlianRoad, Shanghai 201306, China
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
11
|
Zhu M, Zhang M, Yuan Y, Zhang P, Du S, Ya T, Chen D, Wang X, Zhang T. Responses of microbial communities and their interactions to ibuprofen in a bio-electrochemical system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112473. [PMID: 33819654 DOI: 10.1016/j.jenvman.2021.112473] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/07/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Ibuprofen has caused great concerns due to their potential environmental risks. However, their removal efficiency and their effects on microbial interactions in bio-electrochemical system remain unclear. To address these issues, a lab-scale bio-electrochemical reactor integrated with sulfur/iron-mediated autotrophic denitrification (BER-S/IAD) system exposing to 1000 μg L-1 ibuprofen was operated for about two months. Results revealed that the BER-S/IAD system obtained efficient simultaneous denitrification (98.93%) and phosphorus (82.67%) removal, as well as an excellent ibuprofen removal performance (96.98%). Ibuprofen had no significant impacts on the nitrate (NO3--N) removal and the ammonia (NH4+-N) accumulation, but decreased the total nitrogen (TN) and total phosphorus (TP) removal efficiencies. MiSeq sequencing analysis revealed that ibuprofen significantly (P < 0.05) decreased the microbial community diversity and changed their overall structure. Some bacteria related to denitrification and phosphorus removal, such as Pseudomonas and Thiobacillus, decreased significantly (P < 0.05). Moreover, molecular ecological network (MEN) analysis revealed that ibuprofen decreased the network's size and complexity, and enhanced the negative correlations of Proteobacteria and Firmicutes. Besides, ibuprofen decreased the links of some keystone bacteria related to denitrification and phosphorus removal. This research could provide a new dimension for our comprehending of the responses of microbial communities and their interactions to ibuprofen in bio-electrochemical system.
Collapse
Affiliation(s)
- Minghan Zhu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China; Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Minglu Zhang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Yibo Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Peilin Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuai Du
- Beijing Guo Dian Fu Tong Science and Technology Development Co., Ltd., Beijing, 100090, China
| | - Tao Ya
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Daying Chen
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|