1
|
Shen X, Dong W, Su X, Wan Y, Zhang Q, Rao C, Wang S, Lyu H, Song T. Overload of dissolved organic matter (DOM) in riparian infiltration zone increasing the pollution risk of naphthalene, insight from the competitive inhibition of naphthalene biodegradation by DOM. WATER RESEARCH 2024; 264:122251. [PMID: 39146851 DOI: 10.1016/j.watres.2024.122251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Riparian infiltration zones are crucial for maintaining water quality by reducing the aqueous concentrations of polycyclic aromatic hydrocarbons (PAHs) through adsorption and biodegradation within the aquatic ecosystem. Dissolved organic matter (DOM) are ubiquitous in riparian infiltration zones where they extensively engage in the adsorption and biodegradation of PAHs, thereby influencing PAHs natural attenuation potential within riparian infiltration zones. Few studies have explored the natural attenuation mechanisms of PAHs influenced by DOM in riparian infiltration zones. In this study, the natural attenuation mechanisms of naphthalene (a typical PAHs component), under the influence of DOM, were explored, based on a case riverside source area. Analysis of microbial community structures, and the electron acceptor (e.g., Fe(III), DO/NO3-, SO42-)/electron donor (naphthalene and DOM) concentration changes within the riparian infiltration zone revealed a competitive inhibition relationship between DOM and naphthalene during microbial metabolism. Biodegradation experiments showed that when the concentration of DOM is higher than 4.0 mg·L-1, it inhibits the biodegradation of naphthalene. DOM competitively inhibits the biodegradation of naphthalene through the following mechanisms: (i) triggering microbial antioxidative defense mechanisms, diminishing the available resources for microbial participation in naphthalene degradation; (ii) altering microbial community structure; (iii) modulating microbial EPS composition, reducing the efficiency of microorganisms in utilizing carbon sources; and (iv) inhibiting the expression levels of downstream genes involved in naphthalene degradation. The competitive inhibition constants of DOM with concentrations of 1.0, 2.0, 4.0, 8.0, and 16.0 mg·L-1 on naphthalene biodegradation are -2.0 × 10-3, -5.0 × 10-3,1.0 × 10-3, 4.0 × 10-4, and 1.0 × 10-4, respectively. These findings enhance understanding of PAHs attenuation in riparian infiltration zone, providing a basis for assessing and managing PAHs pollution risks during riparian extraction.
Collapse
Affiliation(s)
- Xiaofang Shen
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Weihong Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China.
| | - Xiaosi Su
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Yuyu Wan
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Qichen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Chenmo Rao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Shinian Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Hang Lyu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Tiejun Song
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
2
|
Hamdan HZ, Ahmad FA, Zayyat RM, Salam DA. Spatio-temporal variation of the microbial community of the coast of Lebanon in response to petroleum hydrocarbon pollution. MARINE POLLUTION BULLETIN 2023; 192:115037. [PMID: 37201353 DOI: 10.1016/j.marpolbul.2023.115037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
In this study, the coast of Lebanon was analyzed for the dynamic changes in sediment microbial communities in response to a major petroleum oil spill and tar contamination that occurred in the summer of 2021. Spatio-temporal variations in the microbial structure along the shores of Lebanon were assessed in comparison to baseline microbial structure determined in 2017. Microbial community structure and diversity were determined using Illumina MiSeq technology and DADA2 pipeline. The results show a significant diversity of microbial populations along the Lebanese shore, and a significant change in the sediment microbial structure within four years. Namely, Woeseia, Blastopirellula, and Muriicola were identified in sediment samples collected in year 2017, while a higher microbial diversity was observed in 2021 with Woeseia, Halogranum, Bacillus, and Vibrio prevailing in beach sediments. In addition, the results demonstrate a significant correlation between certain hydrocarbon degraders, such as Marinobacter and Vibrio, and measured hydrocarbon concentrations.
Collapse
Affiliation(s)
- Hamdan Z Hamdan
- Department of Natural Sciences, School of Arts & Sciences, Lebanese American University, Beirut, Lebanon
| | - Farah Ali Ahmad
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Ramez M Zayyat
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Darine A Salam
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
3
|
Mier AA, Olvera-Vargas H, Mejía-López M, Longoria A, Verea L, Sebastian PJ, Arias DM. A review of recent advances in electrode materials for emerging bioelectrochemical systems: From biofilm-bearing anodes to specialized cathodes. CHEMOSPHERE 2021; 283:131138. [PMID: 34146871 DOI: 10.1016/j.chemosphere.2021.131138] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
Bioelectrochemical systems (BES), mainly microbial fuel cells (MEC) and microbial electrolysis cells (MFC), are unique biosystems that use electroactive bacteria (EAB) to produce electrons in the form of electric energy for different applications. BES have attracted increasing attention as a sustainable, low-cost, and neutral-carbon option for energy production, wastewater treatment, and biosynthesis. Complex interactions between EAB and the electrode materials play a crucial role in system performance and scalability. The electron transfer processes from the EAB to the anode surface or from the cathode surface to the EAB have been the object of numerous investigations in BES, and the development of new materials to maximize energy production and overall performance has been a hot topic in the last years. The present review paper discusses the advances on innovative electrode materials for emerging BES, which include MEC coupled to anaerobic digestion (MEC-AD), Microbial Desalination Cells (MDC), plant-MFC (P-MFC), constructed wetlands-MFC (CW-MFC), and microbial electro-Fenton (BEF). Detailed insights on innovative electrode modification strategies to improve the electrode transfer kinetics on each emerging BES are provided. The effect of materials on microbial population is also discussed in this review. Furthermore, the challenges and opportunities for materials scientists and engineers working in BES are presented at the end of this work aiming at scaling up and industrialization of such versatile systems.
Collapse
Affiliation(s)
- Alicia A Mier
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - Hugo Olvera-Vargas
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - M Mejía-López
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - Adriana Longoria
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - Laura Verea
- Instituto de Investigación e Innovación en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, 29039, Tuxtla Gutiérrez, Chiapas, Mexico
| | - P J Sebastian
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - Dulce María Arias
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico.
| |
Collapse
|