1
|
Parades-Aguilar J, Agustin-Salazar S, Cerruti P, Ambrogi V, Calderon K, Gamez-Meza N, Medina-Juarez LA. Agro-industrial wastes and their application perspectives in metal decontamination using biocomposites and bacterial biomass: a review. World J Microbiol Biotechnol 2024; 41:16. [PMID: 39710797 DOI: 10.1007/s11274-024-04227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Contamination of water bodies is a significant global issue that results from the deliberate release of pollutants into the environment, especially from mining and metal processing industries. The main pollutants generated by these industries are metallic wastes, particularly metals, which can cause adverse effects on the environment and human health. Therefore, it is crucial to develop effective and sustainable approaches to prevent their discharge into the environment. Biofiltration is a technique used to remediate contaminated fluids using biological processes. Microorganisms and agro-industrial wastes have been used successfully as biosorbents. Hence, this review emphasizes the innovative use of agro-industrial waste reinforced with microbial biomass as bioadsorbents, highlighting their dual capacity for metal removal through various bioremediation mechanisms. The mechanisms at play in these biocomposite materials, which offer enhanced sustainability, are also analyzed. This study contributes to the advancement of knowledge by suggesting new strategies for integrating reinforced materials in biosorption processes, thus providing a novel perspective on the potential of lignocellulosic-based systems to improve decontamination efforts. On the other hand, it shows some studies where the optimization and scaling-up of biosorption processes are reported. Additionally, the implementation of multisystem approaches, leveraging multiple bioremediation techniques simultaneously, can further enhance the efficiency and sustainability of metal removal in contaminated environments.
Collapse
Affiliation(s)
- Jonathan Parades-Aguilar
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio s/n, entre Reforma y Sahuaripa, Edificio 7G, Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Sarai Agustin-Salazar
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, Pozzuoli (Na), 80078, Italy.
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, Pozzuoli (Na), 80078, Italy
| | - Veronica Ambrogi
- Department of Chemical, Materials and Production Engineering (DICMAPI), University of Naples Federico II, Piazzale Tecchio 80, Naples, 80125, Italy
| | - Kadiya Calderon
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio s/n, entre Reforma y Sahuaripa, Edificio 7G, Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Nohemi Gamez-Meza
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio s/n, entre Reforma y Sahuaripa, Edificio 7G, Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Luis Angel Medina-Juarez
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio s/n, entre Reforma y Sahuaripa, Edificio 7G, Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico.
| |
Collapse
|
2
|
Vishwakarma MC, Joshi HK, Tiwari P, Bhandari NS, Joshi SK. Thermodynamic, kinetic, and equilibrium studies of Cu(II), Cd(II), Ni(II), and Pb(II) ion biosorption onto treated Ageratum conyzoid biomass. Int J Biol Macromol 2024; 274:133001. [PMID: 38897497 DOI: 10.1016/j.ijbiomac.2024.133001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/13/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
The issue of environmental contamination, particularly caused by the existence of heavy metal particles, is a major and widely recognized subject that receives substantial global attention. The remediation of Cu(II), Cd(II), Ni(II), and Pb(II) ionic metal particles from synthetic wastewater using chemically treated plant leaves of Ageratum conyzoides (TAC) as a biosorbent was investigated. The biosorption process was implemented utilizing a batch system, wherein several operational parameters were considered, including temperature, pH, agitation time, biosorbent dosage, and initial concentration of the metal ion. Langmuir, Freundlich, Temkin, and D-R isotherm models were used to evaluate equilibrium data. The analyzed parameter exhibits characteristics that were best fitted with the Langmuir isotherm. The observed biosorption capacities (qm) of Cu(II), Pb(II), Ni(II), and Cd(II) ions on the TAC were measured as 51.573, 30.49, 33.53, and 35.91 mg/g, respectively, at a temperature of 22 °C. The affinity sequence of these metal ions follows the order Cu(II) > Pb(II) > Ni(II) > Cd(II). The measured values for the biosorption free energy change (ΔG) of Cu(II), Pb(II), Cd(II), and Ni(II) metal ions ranged from -1.017 to -4.723, -1.368 to -3.612, -2.785 to -5.21, and -1.047 to -5.135 kJ/mol, respectively. The enthalpy (ΔH) for Cu(II), Pb(II), Cd(II), and Ni(II) were determined to be +19.33, +6.82, +14.83, and +38.07 kJ/mol, respectively. Similarly, the corresponding entropy changes (ΔS) for the same series of metal ions were recorded as +0.075, +0.064, +0.063, and +0.135 kJ/mol.K. The pseudo-second-order kinetic models yielded superior outcomes in comparison to the pseudo-first-order kinetic models. The findings of the experiment indicated that the TAC demonstrates favorable efficacy in extracting all four metal ions. Hence, the utilization of biomass derived from Ageratum conyzoides leaves has proven to be a viable and economically feasible approach for biosorption of all four metals.
Collapse
Affiliation(s)
- Mahesh Chandra Vishwakarma
- Department of Chemistry, Govt. Post Graduate College Bageshwar, Soban Singh Jeena University, Uttarakhand, India.
| | - Hemant Kumar Joshi
- Department of Chemistry, Nanhi Pari Seemant Engineering Institute, Pithoragarh, Uttarakhand, India
| | - Priyanka Tiwari
- Department of Chemistry MB Post Graduate College Haldwani, Kumaun University, Uttarakhand, India
| | - Narendra Singh Bhandari
- Department of Chemistry, SSJ Campus Almora, Soban Singh Jeena University, Uttarakhand, India
| | - Sushil Kumar Joshi
- Department of Chemistry, SSJ Campus Almora, Soban Singh Jeena University, Uttarakhand, India
| |
Collapse
|
3
|
Staszak K, Regel-Rosocka M. Removing Heavy Metals: Cutting-Edge Strategies and Advancements in Biosorption Technology. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1155. [PMID: 38473626 DOI: 10.3390/ma17051155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
This article explores recent advancements and innovative strategies in biosorption technology, with a particular focus on the removal of heavy metals, such as Cu(II), Pb(II), Cr(III), Cr(VI), Zn(II), and Ni(II), and a metalloid, As(V), from various sources. Detailed information on biosorbents, including their composition, structure, and performance metrics in heavy metal sorption, is presented. Specific attention is given to the numerical values of the adsorption capacities for each metal, showcasing the efficacy of biosorbents in removing Cu (up to 96.4%), Pb (up to 95%), Cr (up to 99.9%), Zn (up to 99%), Ni (up to 93.8%), and As (up to 92.9%) from wastewater and industrial effluents. In addition, the issue of biosorbent deactivation and failure over time is highlighted as it is crucial for the successful implementation of adsorption in practical applications. Such phenomena as blockage by other cations or chemical decomposition are reported, and chemical, thermal, and microwave treatments are indicated as effective regeneration techniques. Ongoing research should focus on the development of more resilient biosorbent materials, optimizing regeneration techniques, and exploring innovative approaches to improve the long-term performance and sustainability of biosorption technologies. The analysis showed that biosorption emerges as a promising strategy for alleviating pollutants in wastewater and industrial effluents, offering a sustainable and environmentally friendly approach to addressing water pollution challenges.
Collapse
Affiliation(s)
- Katarzyna Staszak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Magdalena Regel-Rosocka
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
4
|
Cazzoli R, Zamborlin A, Ermini ML, Salerno A, Curcio M, Nicoletta FP, Iemma F, Vittorio O, Voliani V, Cirillo G. Evolving approaches in glioma treatment: harnessing the potential of copper metabolism modulation. RSC Adv 2023; 13:34045-34056. [PMID: 38020008 PMCID: PMC10661684 DOI: 10.1039/d3ra06434d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
The key properties and high versatility of metal nanoparticles have shed new perspectives on cancer therapy, with copper nanoparticles gaining great interest because of the ability to couple the intrinsic properties of metal nanoparticles with the biological activities of copper ions in cancer cells. Copper, indeed, is a cofactor involved in different metabolic pathways of many physiological and pathological processes. Literature data report on the use of copper in preclinical protocols for cancer treatment based on chemo-, photothermal-, or copper chelating-therapies. Copper nanoparticles exhibit anticancer activity via multiple routes, mainly involving the targeting of mitochondria, the modulation of oxidative stress, the induction of apoptosis and autophagy, and the modulation of immune response. Moreover, compared to other metal nanoparticles (e.g. gold, silver, palladium, and platinum), copper nanoparticles are rapidly cleared from organs with low systemic toxicity and benefit from the copper's low cost and wide availability. Within this review, we aim to explore the impact of copper in cancer research, focusing on glioma, the most common primary brain tumour. Glioma accounts for about 80% of all malignant brain tumours and shows a poor prognosis with the five-year survival rate being less than 5%. After introducing the glioma pathogenesis and the limitation of current therapeutic strategies, we will discuss the potential impact of copper therapy and present the key results of the most relevant literature to establish a reliable foundation for future development of copper-based approaches.
Collapse
Affiliation(s)
- Riccardo Cazzoli
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales Sydney NSW Australia
| | - Agata Zamborlin
- NEST-Scuola Normale Superiore Piazza San Silvestro 12 - 56127 Pisa Italy
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
| | - Maria Laura Ermini
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
| | - Antonietta Salerno
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales Sydney NSW Australia
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| | - Orazio Vittorio
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales Sydney NSW Australia
- School of Biomedical Sciences, University of New South Wales Sydney NSW Australia
| | - Valerio Voliani
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa Viale Cembrano 4 - 16148 Genoa Italy
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| |
Collapse
|
5
|
Eboibi BE, Ogbue MC, Udochukwu EC, Umukoro JE, Okan LO, Agarry SE, Aworanti OA, Ogunkunle O, Laseinde OT. Bio-sorptive remediation of crude oil polluted sea water using plantain ( Musa parasidiaca) leaves as bio-based sorbent: Parametric optimization by Taguchi technique, equilibrium isotherm and kinetic modelling studies. Heliyon 2023; 9:e21413. [PMID: 38027684 PMCID: PMC10665695 DOI: 10.1016/j.heliyon.2023.e21413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
This study investigated the potential of employing plantain leaves as a natural bio-based sorbent for crude oil spill polluted seawater remediation. Type L9(34) Taguchi orthogonal array technique was used to evaluate the effect of four independent bio-sorption factors at three different levels (crude oil initial concentration (X1 7.8, 11.5 and 15.6 g/L), seawater-crude oil temperature (X2 25, 35 and 45 °C), bio-sorbent dosage (X3 1, 2 and 3 g) and bio-sorbent particle size (X4 1.18, 2.36 and 4.72 mm) on two response indices (bio-sorption efficiency (%) and bio-sorption capacity (g/g)). Taguchi optimization technique, numerical-desirability index function optimization technique and a proposed optimization method were utilized to determine the optimum bio-sorption factors needed for the optimum bio-sorption efficiency and bio-sorption capacity. The results demonstrated that the crude oil bio-sorption efficiency of the plantain leaves was significantly influenced by X1, X3 and X4 and the bio-sorption capacity was mainly influenced by X1 and X3. The optimum bio-sorption efficiency and the optimum bio-sorption capacity were 99.05 % and 12.82 g/g, respectively, obtained at optimum combination of factors and levels of X11 (7.8 g/L), X33 (3 g) and X41 (1.18 mm) for bio-sorption efficiency and X13 (15.6 g/L) X31 (1 g) for bio-sorption capacity. The Freundlich and Dubinin-Rudeshkevich isotherm models best explain the equilibrium bio-sorption data, while the pseudo-second order kinetic model best describes the bio-sorption kinetics. The bio-sorptive remediation mechanism followed dual mechanism of physical and chemical bio-sorption and the mass transfer controlled by film diffusion. The maximum bio-sorption capacity (K f ) was 14.0 gg-1.
Collapse
Affiliation(s)
- Blessing E. Eboibi
- Biochemical and Bioenvironmental Engineering Laboratory, Department of Chemical Engineering, Delta State University, Abraka, P. M. B. 22, Oleh Campus, Nigeria
- Department of Chemical Engineering, Federal University, Otuoke, Nigeria
| | - Michael C. Ogbue
- Department of Petroleum Engineering, Delta State University, Abraka, P. M. B. 22, Oleh Campus, Nigeria
| | | | - Judith E. Umukoro
- Biochemical and Bioenvironmental Engineering Laboratory, Department of Chemical Engineering, Delta State University, Abraka, P. M. B. 22, Oleh Campus, Nigeria
| | - Laura O. Okan
- Biochemical and Bioenvironmental Engineering Laboratory, Department of Chemical Engineering, Delta State University, Abraka, P. M. B. 22, Oleh Campus, Nigeria
| | - Samuel E. Agarry
- Department of Chemical Engineering, Federal University, Otuoke, Nigeria
- Biochemical and Bioenvironmental Engineering Research Group, Department of Chemical Engineering, Ladoke Akintola University of Technology, P. M. B. 4000, Ogbomoso, Nigeria
| | - Oluwafunmilayo A. Aworanti
- Biochemical and Bioenvironmental Engineering Research Group, Department of Chemical Engineering, Ladoke Akintola University of Technology, P. M. B. 4000, Ogbomoso, Nigeria
| | - Oyetola Ogunkunle
- Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, South Africa
| | - Opeyeolu T. Laseinde
- Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, South Africa
| |
Collapse
|
6
|
Xiang Y, Liu G, Yin Y, Cai Y. Binding characteristics of Hg(II) with extracellular polymeric substances: implications for Hg(II) reactivity within periphyton. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60459-60471. [PMID: 35426017 DOI: 10.1007/s11356-022-19875-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Periphyton contains extracellular polymeric substances (EPS), yet little is known about how periphyton EPS affect the speciation and mobility of mercury (Hg(II)) in aquatic systems. This study extracted and characterized EPS from periphyton in Florida Everglades, and explored its role in Hg(II) binding and speciation using multiple approaches. Results from Fourier transform infrared spectroscopy (FTIR) revealed that colloidal and capsular EPS were primarily comprised of proteins, polysaccharides, phospholipids, and nucleic acids. Ultrafiltration experiments demonstrated that 77 ± 7.7% and 65 ± 5.5% of Hg(II) in EPS solution could be transformed into colloidal and capsular EPS-bound forms. Three-dimensional excitation emission fluorescence spectra (3D-EEMs) showed that the binding constants (Kb) between colloidal/capsular EPS and Hg(II) were 3.47×103 and 2.62×103 L·mol-1. Together with 3D-EEMs and FTIR, it was found that the protein-like and polysaccharide-like substances in EPS contributed to Hg(II) binding. For colloidal EPS, COO- was the most preferred Hg(II) binding group, while C-N, C-O-C, and C-OH were the most preferred ones in capsular EPS. Using the stannous-reducible Hg approach, it was found that EPS significantly decreased the reactive Hg(II). Overall, this study demonstrated that EPS from periphyton are important organic ligands for Hg(II) complexation, which may further affect the migration and reactivity of Hg(II) in aquatic environment. These observations could improve our understanding of Hg(II) methylation and accumulation within periphyton in aquatic systems.
Collapse
Affiliation(s)
- Yuping Xiang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Department of Chemistry & Biochemistry and Southeast Environmental Research Center, Florida International University, 11200 SW 8th ST, Miami, FL, 33199, USA
| | - Guangliang Liu
- Department of Chemistry & Biochemistry and Southeast Environmental Research Center, Florida International University, 11200 SW 8th ST, Miami, FL, 33199, USA
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- Department of Chemistry & Biochemistry and Southeast Environmental Research Center, Florida International University, 11200 SW 8th ST, Miami, FL, 33199, USA.
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
7
|
Feng Z, Zhang W, Sun T. Effects of seasonal biofouling on diffusion coefficients through filter membranes with different hydrophilicities in natural waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148536. [PMID: 34225148 DOI: 10.1016/j.scitotenv.2021.148536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Biofouling is a major issue for the diffusive gradients in thin films (DGT) passive samplers during long-term deployment. Although biofilms have a negative effect on DGT samplers, the effects of seasonal biofilms on the flux of targets through different membranes are poorly understood. Herein, we evaluated the relationship between the biofilm growth and diffusion coefficients' decline rate through two membranes with different hydrophilicities during the four seasons in natural waters. Cu2+ and tetracycline were selected as the model metal and organic contaminant, respectively. Rapid biofilm growth on the membrane surface was observed, and the fouling growth rate increased in the order: winter < spring < autumn < summer. Biofouling had a negative effect on the diffusion coefficients of Cu2+ and tetracycline. Generally, the decreasing tendency of diffusion coefficients agreed with the increasing tendency of the fouling growth rate. Biofilms in a lag phase with little bacterial colonies had insignificant effect on the diffusion coefficients. After 30 days, the decline ratios of diffusion coefficients were in the range of 38.14%-53.05%, 69.63%-83.19%, 51.57-68.42%, and 19.43-35.84%, respectively, during the spring, summer, autumn and winter. The flux through the membrane with higher hydrophilicity was greater. Both the hydrophilicity of membrane and structure of target analytes had important effects on the diffusion coefficients through biofouled membranes. Owing to similar physical and chemical characteristics, there was insignificant difference in diffusion coefficients decline trend between the Yalu River water and Hunhe River water in the summer.
Collapse
Affiliation(s)
- Zhongmin Feng
- College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Wenya Zhang
- College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Ting Sun
- College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China.
| |
Collapse
|
8
|
Fathollahi A, Coupe SJ. Effect of environmental and nutritional conditions on the formation of single and mixed-species biofilms and their efficiency in cadmium removal. CHEMOSPHERE 2021; 283:131152. [PMID: 34147985 DOI: 10.1016/j.chemosphere.2021.131152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/29/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Remediation of contaminated water and wastewater using biosorption methods has attracted significant attention in recent decades due to its efficiency, convenience and minimised environmental effects. Bacterial biosorbents are normally deployed as a non-living powder or suspension. Little is known about the mechanisms or rates of bacterial attachment to surfaces and effect of various conditions on the biofilm development, as well as efficiency of living biofilms in the removal of heavy metals. In the present study, the effect of environmental and nutritional conditions such as pH, temperature, concentrations of phosphate, glucose, amino acid, nitrate, calcium and magnesium, on planktonic and biofilm growth of single and mixed bacterial cultures, were measured. Actinomyces meyeri, Bacillus cereus, Escherichia coli, Pseudomonas fluorescens strains were evaluated to determine the optimum biofilm growth conditions. The Cd(II) biosorption efficiencies of the mixed-species biofilm developed in the optimum growth condition, were investigated and modelled using Langmuir, Freundlich and Dubnin Radushkevich models. The biofilm quantification techniques revealed that the optimum concentration of phosphate, glucose, amino acid, nitrate, calcium and magnesium for the biofilm development were 25, 10, 1, 1.5, 5 and 0.5 g L-1, respectively. Further increases in the nutrient concentrations resulted in less biofilm growth. The optimum pH for the biofilm growth was 7 and alkaline or acidic conditions caused significant negative effects on the bacterial attachment and development. The optimum temperatures for the bacterial attachment to the surface were between 25 and 35 °C. The maximum Cd(II) biosorption efficiency (99%) and capacity (18.19 mg g-1) of the mixed-species biofilm, occurred on day 35 (Ci = 0.1 mg L-1) and 1 (Ci = 20 mg L-1) of biofilm growth, respectively. Modelling of the biosorption data revealed that Cd(II) removal by the living biofilm was a physical process by a monolayer of biofilm. The results of present study suggested that environmental and nutritional conditions had a significant effect on bacterial biofilm formation and its efficiency in Cd(II) removal.
Collapse
Affiliation(s)
- Alireza Fathollahi
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK.
| | - Stephen J Coupe
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| |
Collapse
|
9
|
Solouki A, Fathollahi A, Viscomi G, Tataranni P, Valdrè G, Coupe SJ, Sangiorgi C. Thermally Treated Waste Silt as Filler in Geopolymer Cement. MATERIALS 2021; 14:ma14175102. [PMID: 34501190 PMCID: PMC8434220 DOI: 10.3390/ma14175102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/22/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
This study aims to investigate the feasibility of including silt, a by-product of limestone aggregate production, as a filler in geopolymer cement. Two separate phases were planned: The first phase aimed to determine the optimum calcination conditions of the waste silt obtained from Società Azionaria Prodotti Asfaltico Bituminosi Affini (S.A.P.A.B.A. s.r.l.). A Design of Experiment (DOE) was produced, and raw silt was calcined accordingly. Geopolymer cement mixtures were made with sodium or potassium alkali solutions and were tested for compressive strength and leaching. Higher calcination temperatures showed better compressive strength, regardless of liquid type. By considering the compressive strength, leaching, and X-ray diffraction (XRD) analysis, the optimum calcination temperature and time was selected as 750 °C for 2 h. The second phase focused on determining the optimum amount of silt (%) that could be used in a geopolymer cement mixture. The results suggested that the addition of about 55% of silt (total solid weight) as filler can improve the compressive strength of geopolymers made with Na or K liquid activators. Based on the leaching test, the cumulative concentrations of the released trace elements from the geopolymer specimens into the leachant were lower than the thresholds for European standards.
Collapse
Affiliation(s)
- Abbas Solouki
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (P.T.); (C.S.)
- Correspondence:
| | - Alireza Fathollahi
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton-on-Dunsmore CV8 3LG, UK; (A.F.); (S.J.C.)
| | | | - Piergiorgio Tataranni
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (P.T.); (C.S.)
| | - Giovanni Valdrè
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Piazza di Porta San Donato 1, 40126 Bologna, Italy;
| | - Stephen J. Coupe
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton-on-Dunsmore CV8 3LG, UK; (A.F.); (S.J.C.)
| | - Cesare Sangiorgi
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (P.T.); (C.S.)
| |
Collapse
|