1
|
Han L, Zhou M, Zhang T, Zhao W, Liu P. Prediction of Potential Suitable Distribution Areas for Northeastern China Salamander ( Hynobius leechii) in Northeastern China. Animals (Basel) 2024; 14:3046. [PMID: 39518769 PMCID: PMC11545738 DOI: 10.3390/ani14213046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The Northeastern China Salamander (Hynobius leechii) is classified as a rare, nationally protected Class II wild animal in China. Its population is declining, and its habitat is deteriorating. This study aimed to predict the distribution of suitable habitats for the Northeastern China Salamander under both current and future climate scenarios, utilizing the MaxEnt model optimized through ENMeval parameters. Species distribution data were collected from field surveys, existing literature, amphibian records in China, and the Global Biodiversity Information Network. A total of 97 records were compiled, with duplicate records within the ENMTools grid unit removed, ensuring that only one record existed within every 5 km. Ultimately, 58 distinct distribution points for the Northeastern China Salamander were identified. The R software package 'ENMeval 2.0' was employed to optimize the feature complexity (FC) and regularization multiplier (RM), and the optimized model was applied to assess the suitable distribution regions for the Northeastern China Salamander under present and future climate conditions. The findings indicated that rainfall and temperature are the primary environmental factors influencing Hynobius. Currently, the suitable habitat for the Northeastern China Salamander constitutes 6.6% of the total area of Northeastern China. Projections for the periods of 2050 and 2070 suggest that suitable habitats for the Northeastern China Salamander will continue to expand towards higher latitudes across three climate scenarios. While this study focuses solely on climate change factors and acknowledges certain limitations, it serves as a reliable reference and provides essential information for the distribution and conservation of the Northeastern China Salamander.
Collapse
Affiliation(s)
- Lei Han
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (L.H.); (T.Z.); (W.Z.)
| | - Minghang Zhou
- School of Mathematical Sciences, Harbin Normal University, Harbin 150025, China;
| | - Ting Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (L.H.); (T.Z.); (W.Z.)
| | - Wenge Zhao
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (L.H.); (T.Z.); (W.Z.)
| | - Peng Liu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (L.H.); (T.Z.); (W.Z.)
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
2
|
Ma Q, Wan L, Shi S, Wang Z. Impact of Climate Change on the Distribution of Three Rare Salamanders ( Liua shihi, Pseudohynobius jinfo, and Tylototriton wenxianensis) in Chongqing, China, and Their Conservation Implications. Animals (Basel) 2024; 14:672. [PMID: 38473057 DOI: 10.3390/ani14050672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The Wushan Salamander (Liua shihi), Jinfo Salamander (Pseudohynobius jinfo), and Wenxian Knobby Salamander (Tylototriton wenxianensis) are rare national Class II protected wild animals in China. We performed MaxEnt modeling to predict and analyze the potential distribution and trends of these species in Chongqing under current and future climate conditions. Species distribution data were primarily obtained from field surveys, supplemented by museum collections and the existing literature. These efforts yielded 636 records, including 43 for P. jinfo, 23 for T. wenxianensis, and 570 for L. shihi. Duplicate records within the same 100 m × 100 m grid cell were removed using ENMTools, resulting in 10, 12, and 58 valid distribution points for P. jinfo, T. wenxianensis, and L. shihi, respectively. The optimization of feature class parameters (FC) and the regularization multiplier (RM) were applied using R package "ENMeval 2.0" to establish the optimal model with MaxEnt. The refined models were applied to simulate the suitable distribution areas for the three species. The results indicate that the current suitable habitat area for L. shihi accounted for 9.72% of the whole region of the Chongqing municipality. It is projected that, by 2050, the proportion of suitable habitat will increase to 12.54% but will decrease to 11.98% by 2070 and further decline to 8.80% by 2090. The current suitable habitat area for P. jinfo accounted for 1.08% of the whole region of the Chongqing municipality, which is expected to decrease to 0.31%% by 2050, 0.20% by 2070, and 0.07% by 2090. The current suitable habitat area for T. wenxianensis accounted for 0.81% of the whole region of the Chongqing municipality, which is anticipated to decrease to 0.37% by 2050, 0.21% by 2070, and 0.06% by 2090. Human disturbance, climate variables, and habitat characteristics are the primary factors influencing the distribution of three salamander species in Chongqing. The proximity to roads significantly impacts L. shihi, while climate conditions mainly affect P. jinfo, and the distance to water sources is crucial for T. wenxianensis. The following suggestions were made based on key variables identified for each species: (1) For L. shihi, it is imperative to minimize human disturbances and preserve areas without roads and the existing vegetation within nature reserves to ensure their continued existence. (2) For P. jinfo, the conservation of high-altitude habitats is of utmost importance, along with the reduction in disturbances caused by roads to maintain the species' ecological niche. (3) For T. wenxianensis, the protection of aquatic habitats is crucial. Additionally, efforts to mitigate the impacts of road construction and enhance public awareness are essential for the preservation of this species and the connectivity of its habitats.
Collapse
Affiliation(s)
- Qi Ma
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, School of Life Sciences, Southwest University, Chongqing 400700, China
- Chongqing Natural History Museum, Chongqing 400700, China
| | - Lipeng Wan
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Shengchao Shi
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Wuhan 430056, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhijian Wang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, School of Life Sciences, Southwest University, Chongqing 400700, China
| |
Collapse
|
3
|
Dong X, Ju T, Shi L, Luo C, Gan L, Wang Z, Wang W, He H, Zhang S, Zhou Y, An M, Jiang H, Shao J, Xiang T. Evaluating effects of climate change on the spatial distribution of an atypical cavefish Onychostoma macrolepis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119643. [PMID: 38006644 DOI: 10.1016/j.jenvman.2023.119643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
Comprehending endangered species' spatial distribution in response to global climate change (GCC) is of great importance for formulating adaptive management, conservation, and restoration plans. However, it is regrettable that previous studies mainly focused on geoclimatic species, while neglected climate-sensitive subterranean taxa to a large extent, which clearly hampered the discovery of universal principles. In view of this, taking the endemic troglophile riverine fish Onychostoma macrolepis (Bleeker, 1871) as an example, we constructed a MaxEnt (maximum-entropy) model to predict how the spatial distribution of this endangered fish would respond to future climate changes (three Global Climate Models × two Shared Socio-economic Pathways × three future time nodes) based on painstakingly collected species occurrence data and a set of bioclimatic variables, including WorldClim and ENVIREM. Model results showed that variables related to temperature rather than precipitation were more important in determining the geographic distribution of this rare and endemic fish. In addition, the suitable areas and their distribution centroids of O. macrolepis would shrink (average: 20,901.75 km2) and move toward the northeast or northwest within the study area (i.e. China). Linking our results with this species' limited dispersion potential and unique habitat requirements (i.e. karst landform is essential), we thus recommended in situ conservation to protect this relict.
Collapse
Affiliation(s)
- Xianghong Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Tao Ju
- Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Lei Shi
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Chao Luo
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Lei Gan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhenlu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Weiwei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Haoyu He
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Shuhai Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Yuebing Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Miao An
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Haibo Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jian Shao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Tao Xiang
- Laboratoire Evolution et Diversité Biologique (EDB), UMR5174, Université Toulouse 3 Paul Sabatier, CNRS, IRD, Toulouse, 31062, France.
| |
Collapse
|
4
|
Yang L, Zhuang H, Liu S, Cong B, Huang W, Li T, Liu K, Zhao L. Estimating the Spatial Distribution and Future Conservation Requirements of the Spotted Seal in the North Pacific. Animals (Basel) 2023; 13:3260. [PMID: 37893984 PMCID: PMC10603672 DOI: 10.3390/ani13203260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Local adaptation has been increasingly involved in the designation of species conservation strategies to response to climate change. Marine mammals, as apex predators, are climatechange sensitive, and their spatial distribution and conservation requirements are critically significant for designing protection strategies. In this study, we focused on an ice-breeding marine mammal, the spotted seal (Phoca largha), which exhibits distinct morphological and genetic variations across its range. Our objectives were to quantify the ecological niches of three spotted seal populations, construct the species-level model and population-level models that represent different regions in the Bering population (BDPS), Okhotsk population (ODPS) and southern population (SDPS), and conduct a conservation gap analysis. Our findings unequivocally demonstrated a clear niche divergence among the three populations. We predicted habitat contraction for the BDPS and ODPS driven by climate change; in particular, the spotted seals inhabiting Liaodong Bay may face breeding habitat loss. However, most spotted seal habitats are not represented in existing marine protected areas. Drawing upon these outcomes, we propose appropriate conservation policies to effectively protect the habitat of the different geographical populations of spotted seals. Our research addresses the importance of incorporating local adaptation into species distribution modeling to inform conservation and management strategies.
Collapse
Affiliation(s)
- Leyu Yang
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (L.Y.); (K.L.)
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (H.Z.); (S.L.); (B.C.); (W.H.); (T.L.)
| | - Hongfei Zhuang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (H.Z.); (S.L.); (B.C.); (W.H.); (T.L.)
| | - Shenghao Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (H.Z.); (S.L.); (B.C.); (W.H.); (T.L.)
| | - Bailin Cong
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (H.Z.); (S.L.); (B.C.); (W.H.); (T.L.)
| | - Wenhao Huang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (H.Z.); (S.L.); (B.C.); (W.H.); (T.L.)
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tingting Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (H.Z.); (S.L.); (B.C.); (W.H.); (T.L.)
| | - Kaiyu Liu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (L.Y.); (K.L.)
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (H.Z.); (S.L.); (B.C.); (W.H.); (T.L.)
| | - Linlin Zhao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (H.Z.); (S.L.); (B.C.); (W.H.); (T.L.)
| |
Collapse
|
5
|
Vaissi S. Historic range dynamics in Kaiser's mountain newt ( Neurergus kaiseri): Insights from phylogeographic analyses and species distribution modeling. Ecol Evol 2021; 11:7622-7633. [PMID: 34188839 PMCID: PMC8216884 DOI: 10.1002/ece3.7595] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 11/20/2022] Open
Abstract
Vulnerable Kaiser's mountain newt, Neurergus kaiseri, is endemic to highland streams, springs, and pools of the southwestern Zagros mountain, Iran. The present study aimed to use an integration of phylogeographical and species distribution modeling (SDM) approaches to provide new insights into the evolutionary history of the species throughout Quaternary climate oscillations. The phylogeographical analysis was followed by analyzing two mitochondrial DNA (mt-DNA) markers including 127 control region (D-loop) and 72 NADH dehydrogenase 2 (ND2) sequences from 15 populations in the entire species range that were obtained from GenBank. Potential recent and past distribution (the Last Glacial Maximum, LGM, 21 Kya and the Mid-Holocene, 6 Kya) reconstructed by ensemble SDM using nine algorithms with CCSM4, MIROC-ESM, and MPI-ESM-P models. N. kaiseri displayed two distinct lineages in the northern and southern regions that diverged in the Early-Pleistocene. The demographics analysis showed signs of a slight increase in effective population size for both northern and southern populations in the Mid-Pleistocene. Biogeography analysis showed that both vicariance and dispersal events played an important role in the formation of recent species distribution of N. kaiseri. Based on SDM projection onto paleoclimatic data, N. kaiseri displayed a scenario of past range expansion that followed by postglacial contraction. The models showed that the distribution range of the species may have shifted to a lower altitude during LGM while with amelioration of climatic during Mid-Holocene to recent conditions caused the species to shift to the higher altitude. The findings of the current study support the hypothesis that the Zagros mountains may be acting as climatic refugia and play an important role in the protection of isolated populations during climate oscillations.
Collapse
Affiliation(s)
- Somaye Vaissi
- Department of BiologyFaculty of ScienceRazi UniversityKermanshahIran
| |
Collapse
|
6
|
Design of Protected Area by Tracking and Excluding the Effects of Climate and Landscape Change: A Case Study Using Neurergus derjugini. SUSTAINABILITY 2021. [DOI: 10.3390/su13105645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study aimed to use the applications of Ensemble Species Distribution Modelling (eSDM), Geographical Information Systems (GISs), and Multi-Criteria Decision Analysis (MCDA) for the design of a protected area (PA) for the critically endangered yellow-spotted mountain newt, Neurergus derjugini, by tracking and excluding the effects of climate and landscape changes in western Iran and northeastern Iraq. Potential recent and future distributions (2050 and 2070) were reconstructed by eSDM using eight algorithms with MRI-CGCM3 and CCSM4 models. The GIS-based MCDA siting procedure was followed inside habitats with high eSDM suitability by eliminating the main roads, cities, high village density, dams, poor vegetation, low stream density, agricultural lands and high ridge density. Then, within the remaining relevant areas, 10 polygons were created as “nominations” for PAs (NPAs). Finally, for 10 different NPAs, the suitability score was ranked based on ratings and weights (analytical hierarchy process) of the number of newt localities, NPA connectivity, NPA shape, NPA habitat suitability in 2070, NPA size, genetic diversity, village density and distance to nearest PAs, cities, and main roads. This research could serve as a modern realistic approach for environmental management to plan conservation areas using a cost-effective and affordable technique.
Collapse
|