1
|
Lan T, Lai Y, Gao J, Luo X, Ma Q. The changing permafrost environment under desertification and the heat transfer mechanism in the Qinghai-Tibetan Plateau. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122055. [PMID: 39111008 DOI: 10.1016/j.jenvman.2024.122055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
With the development of desertification in the Qinghai-Tibet Plateau (QTP), aeolian sand becomes the remarkable local factor affecting the thermal state of permafrost along the Qinghai-Tibet Engineering Corridor (QTEC). In this study, a model experiment was conducted to analyze the impact of thickness and water content of aeolian sand on its thermal effect, and a hydro-thermo-vapor coupling model of frozen soil was carried out to reveal the heat transfer mechanism of the aeolian sand layer (ASL) with different thicknesses and its hydrothermal effect on permafrost. The results indicate that: (1) ASL with the thickness larger than 80 cm has the property of converting precipitation into soil water. The thicker the ASL, the more precipitation infiltrates and accumulates in the soil layer. (2) The cooling effect of ASL on permafrost results from the lower net surface radiation, causing the annual average surface heat flux shifting from heat inflow to heat outflow. The warming effect of ASL on permafrost results from the increasing convective heat accompanying the infiltrated precipitation. (3) As the ASL thickens, the thermal effect of ASL on permafrost gradually shifts from the cooling effect dominated by heat radiation and heat conduction to the warming effect dominated by precipitation infiltration and heat convection. The warming effect of thick ASL on permafrost requires a certain amount of years to manifest, and the critical thickness is suggested to be larger than 120 cm.
Collapse
Affiliation(s)
- Tianli Lan
- State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Yuanming Lai
- State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Jianqiang Gao
- School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China
| | - Xiaoxiao Luo
- School of Civil and Engineering Management, Guangzhou Maritime University, Guangzhou, Guangdong, 510725, China
| | - Qinguo Ma
- State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, Guangdong, 510641, China.
| |
Collapse
|
2
|
Wu L, Miao L, Sun X, Wang H. Effect of calcium sources on enzyme-induced carbonate precipitation to solidify desert aeolian sand. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121687. [PMID: 38986374 DOI: 10.1016/j.jenvman.2024.121687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Enzyme-induced carbonate precipitation (EICP) is a promising technique for soil reinforcement. To select a suitable calcium source and a suitable solution amount for aeolian sand stabilization using EICP, specimens treated with different solution amounts (1.5, 2, 2.5, 3, and 3.5 L/m2). Surface strength, crust thickness, calcium carbonate content (CCC) and water vapor adsorption tests were performed to evaluate the effect of two calcium sources (calcium acetate and calcium chloride) on aeolian sand solidification. The plant suitability of solidified sand was investigated by the sea buckthorn growth test. The suitable calcium source was then used for the laboratory wind tunnel test and the field test to examine the erosion resistance of solidified sand. The results demonstrated that Ca(CH3COO)2-treated specimens exhibited higher strength than CaCl2-treated specimens at the same EICP solution amount, and the water vapor equilibrium adsorption mass of Ca(CH3COO)2-treated specimens was less, indicating that Ca(CH3COO)2-solidified sand was more effective and had better long-term stability. In addition, plants grown in Ca(CH3COO)2-treated sand had greater seedling emergence percentage and higher average height, which indicated that calcium acetate is a more suitable calcium source for EICP treatment. Furthermore, the surface strength and crust thickness of solidified sand increased with increasing the solution amount. For sand treated with 3 L/m2 of solution, the excessive strength and thickness of the crust made plants growth difficult, and the performance of sand treated with more than 2 L/m2 of solution significantly improved. Thus, the solution amount of 2-3 L/m2 is suggested for engineering applications. The sand solidified using EICP in the field could effectively mitigate wind erosion and facilitate the growth of native plants. Therefore, EICP can be combined with vegetative method to achieve long-term wind erosion control in the future.
Collapse
Affiliation(s)
- Linyu Wu
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China.
| | - Linchang Miao
- Transportation School, Southeast University, Nanjing, Jiangsu, 211189, China.
| | - Xiaohao Sun
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, China.
| | - Hengxing Wang
- Transportation School, Southeast University, Nanjing, Jiangsu, 211189, China.
| |
Collapse
|
3
|
Li J, Zhu F, Wu F, Chen Y, Richards J, Li T, Li P, Shang D, Yu J, Viles H, Guo Q. Impact of soil density on biomineralization using EICP and MICP techniques for earthen sites consolidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121410. [PMID: 38850919 DOI: 10.1016/j.jenvman.2024.121410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Enzyme-induced calcium carbonate precipitation (EICP) and microbially-induced calcium carbonate precipitation (MICP) techniques represent emerging trends in soil stabilization. However, the impact of soil density on biomineralization, particularly in historical earthen sites, remains unclear. This study compares the consolidation effects of EICP and MICP on cylindrical samples (10 cm × 5 cm) with three densities (1.5 g/cm3, 1.6 g/cm3, and 1.7 g/cm3) derived from the soil near the UNESCO World Cultural Heritage Site of Suoyang Ancient City, Gansu Province, China. Results showed that calcium carbonate production increased across all densities through bio-cementation, with higher densities producing more calcium carbonate. MICP-treated specimens exhibited larger increases in calcium carbonate production compared to those treated with EICP. Specimens with a density of 1.7 g/cm³ showed a wave velocity increase of 3.26% (EICP) and 7.13% (MICP), and an unconfined compressive strength increase of 8% (EICP) and 26% (MICP). These strength increases correlated with the generation of calcium carbonate. The findings suggest that biomineralization can be effectively utilized for in situ consolidation of earthen sites, emphasizing the importance of considering soil density in biologically-based conservation technologies. Furthermore, MICP shows potential advantages over EICP in providing stronger, compatible and more sustainable soil reinforcement.
Collapse
Affiliation(s)
- Jie Li
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, 736200, Gansu, PR China; Gansu Provincial Research Center for Conservation of Cultural Heritage, Dunhuang, 736200, PR China; Key Scientific Research Base of Conversation for Ancient Wall Paintings of National Cultural Heritage Administration, Dunhuang, 736200, Gansu, PR China.
| | - Feiqing Zhu
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, 736200, Gansu, PR China; Gansu Provincial Research Center for Conservation of Cultural Heritage, Dunhuang, 736200, PR China; Key Scientific Research Base of Conversation for Ancient Wall Paintings of National Cultural Heritage Administration, Dunhuang, 736200, Gansu, PR China
| | - Fasi Wu
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, 736200, Gansu, PR China; Gansu Provincial Research Center for Conservation of Cultural Heritage, Dunhuang, 736200, PR China; Key Scientific Research Base of Conversation for Ancient Wall Paintings of National Cultural Heritage Administration, Dunhuang, 736200, Gansu, PR China.
| | - Yuxin Chen
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, 736200, Gansu, PR China; Gansu Provincial Research Center for Conservation of Cultural Heritage, Dunhuang, 736200, PR China; Key Scientific Research Base of Conversation for Ancient Wall Paintings of National Cultural Heritage Administration, Dunhuang, 736200, Gansu, PR China
| | - Jenny Richards
- School of Geography and the Environment, Oxford University, Oxford, OX1 3QY, UK
| | - Tianxiao Li
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, 736200, Gansu, PR China; Gansu Provincial Research Center for Conservation of Cultural Heritage, Dunhuang, 736200, PR China; Key Scientific Research Base of Conversation for Ancient Wall Paintings of National Cultural Heritage Administration, Dunhuang, 736200, Gansu, PR China
| | - Ping Li
- Cultural Heritage Conservation and Design Consulting Co., Ltd. of Mogao Grottoes, Dunhuang, 736200, Gansu, PR China
| | - Dongjuan Shang
- Cultural Heritage Conservation and Design Consulting Co., Ltd. of Mogao Grottoes, Dunhuang, 736200, Gansu, PR China
| | - Jing Yu
- Cultural Heritage Conservation and Design Consulting Co., Ltd. of Mogao Grottoes, Dunhuang, 736200, Gansu, PR China
| | - Heather Viles
- School of Geography and the Environment, Oxford University, Oxford, OX1 3QY, UK
| | - Qinglin Guo
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, 736200, Gansu, PR China; Gansu Provincial Research Center for Conservation of Cultural Heritage, Dunhuang, 736200, PR China; Key Scientific Research Base of Conversation for Ancient Wall Paintings of National Cultural Heritage Administration, Dunhuang, 736200, Gansu, PR China.
| |
Collapse
|
4
|
Wang Y, Sun X, Miao L, Wang H, Wu L, Shi W, Kawasaki S. State-of-the-art review of soil erosion control by MICP and EICP techniques: Problems, applications, and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169016. [PMID: 38043825 DOI: 10.1016/j.scitotenv.2023.169016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
In recent years, the application of microbially induced calcite precipitation (MICP) and enzyme-induced carbonate precipitation (EICP) techniques have been extensively studied to mitigate soil erosion, yielding substantial achievements in this regard. This paper presents a comprehensive review of the recent progress in erosion control by MICP and EICP techniques. To further discuss the effectiveness of erosion mitigation in-depth, the estimation methods and characterization of erosion resistance were initially compiled. Moreover, factors affecting the erosion resistance of MICP/EICP-treated soil were expounded, spanning from soil properties to treatment protocols and environmental conditions. The development of optimization and upscaling in erosion mitigation via MICP/EICP was also included in this review. In addition, this review discussed the limitations and correspondingly proposed prospective applications of erosion control via the MICP/EICP approach. The current review presents up-to-date information on the research activities for improving erosion resistance by MICP/EICP, aiming at providing insights for interdisciplinary researchers and guidance for promoting this method to further applications in erosion mitigation.
Collapse
Affiliation(s)
- Yong Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Xiaohao Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Linchang Miao
- Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Hengxing Wang
- Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Linyu Wu
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| | - Wenbo Shi
- School of Intelligent Transportation, Xuchang University, Xuchang 461000, Henan, China
| | - Satoru Kawasaki
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| |
Collapse
|
5
|
Komaei A, Soroush A, Fattahi SM, Ghanbari H. Influence of environmental stresses on the durability of slag-based alkali-activated cement crusts for wind erosion control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166576. [PMID: 37633383 DOI: 10.1016/j.scitotenv.2023.166576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Wind erosion is a significant environmental challenge in arid and semi-arid regions, and artificial crust creation on the soil surface has emerged as an effective approach to mitigate this phenomenon. Various methods of crust formation have been proposed to combat wind erosion in these regions. However, a comprehensive study assessing the durability of these crusts against environmental stresses has been lacking. Hence, the primary objective of the present study is to address this critical issue by evaluating the erodibility and surface strength of alkali-activated slag crusts in response to various environmental stressors. These stressors encompass ultraviolet radiation, heating and cooling cycles, wetting and drying cycles, and freezing and thawing cycles. Through wind tunnel tests, erosion rates were measured under different wind velocities and saltation bombardment conditions, while penetrometer tests were conducted to analyze surface strength. The results demonstrate that alkali-activated cementation produced robust crusts, exhibiting an impressive reduction of over 99.9 % in erosion rates compared to untreated samples. However, the introduction of environmental stresses led to a fivefold increase in erosion rates. Freeze and thaw cycles had the most detrimental effect on the alkali-activated cement crusts while heating and cooling cycles had a relatively minor impact. The wetting and drying cycles and UV radiation ranked second and third, respectively, in terms of their destructive effects on crust erodibility. Despite the observed effects, the crusts maintained their efficiency even when subjected to severe environmental stresses. Notably, the erosion rate of the treated crusts after enduring the most severe studied stress, that is five freeze and thaw cycles, was over 250 times lower than that of the untreated samples.
Collapse
Affiliation(s)
- Alireza Komaei
- Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Abbas Soroush
- Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Seyed Mohammad Fattahi
- Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hesam Ghanbari
- Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
6
|
Komaei A, Soroush A, Fattahi SM, Ghanbari H. Wind erosion control using alkali-activated slag cement: Experimental investigation and microstructural analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118633. [PMID: 37478719 DOI: 10.1016/j.jenvman.2023.118633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
This paper aims to mitigate wind erosion of soil by employing alkali-activated slag. Wind tunnel tests were conducted on soil samples treated with varying percentages of slag at different wind speeds (7, 14, 21, and 28 m/s) and under a sand bombardment condition. In the absence of saltating particles, the erodibility ratios of the alkali-activated slag-treated samples with weight percentages of 1%, 2%, 4%, and 6% to the untreated sample at the highest wind speed (i.e., 28 m/s) correspond to 0.19%, 0.10%, 0.08%, and 0.06%, respectively. Moreover, in the presence of saltating particle bombardment, these samples exhibited erodibility reductions of 98.5%, 98.8%, 99.4%, and 99.6% compared to the untreated sample. The strength of the formed crusts, determined by penetrometer tests, increased significantly for the treated samples, ranging from 1300 to 6500 times greater than the untreated sample. The complementary analysis using x-ray diffraction and field emission scanning electron microscopy revealed the formation of albite and anorthite crystals along with the formation of calcium aluminosilicate hydrate, sodium aluminosilicate hydrate, and calcium silicate hydrate gels in the cementation process. Overall, the study highlights the effectiveness of alkali-activated slag in forming strong crusts that provide substantial protection against wind erosion, resulting in a significant decrease in wind erodibility.
Collapse
Affiliation(s)
- Alireza Komaei
- Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Abbas Soroush
- Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Seyed Mohammad Fattahi
- Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hesam Ghanbari
- Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
7
|
Sharma M, Satyam N, Reddy KR, Chrysochoou M. Multiple heavy metal immobilization and strength improvement of contaminated soil using bio-mediated calcite precipitation technique. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51827-51846. [PMID: 35253104 DOI: 10.1007/s11356-022-19551-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Bio-mediated calcite precipitation potential for multiple heavy metal immobilization in contaminated soils at industrial, waste dump, abandoned mine, and landfill sites is not explored yet. This study includes investigation of bio-mediated calcite precipitation for strength improvement and immobilization of heavy metals, specifically lead (Pb), zinc (Zn), and hexavalent chromium (Cr(VI)), in contaminated soils. Firstly, the toxicity resistance of bacteria against different concentrations (1000, 2000, 3000, 4000, and 5000 mg/l) of each heavy metals was investigated and observed that Pb and Cr were less toxic to Sporosarcina pasteurii than Zn. The poorly graded sand was spiked with 333-2000 mg/kg concentrations of a selected individual or mixed metal solutions, i.e., 1000 mg/kg and 2000 mg/kg individual concentrations of Pb, Zn, and Cr(VI); 500 mg/kg and 1000 mg/kg concentration of each metal in "Pb and Zn," "Pb and Cr(VI)," and "Zn and Cr(VI)" mixture of heavy metals; and 333 mg/kg and 666 mg/kg concentration of each metal in "Pb, Zn, and Cr(VI)" mixed metal concentration. Contaminated soil was biotreated with Sporosarcina pasteurii and cementation (a solution of urea and calcium chloride dihydrate) solutions for 18 days. Biocemented sand specimens were subjected to testing of hydraulic conductivity, ultrasonic pulse velocity (UPV), unconfined compressive strength (UCS), calcite content, pH, toxicity characteristic leaching procedure (TCLP), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The heavy metal contaminated samples showed decrease in hydraulic conductivity and increase in UPV and UCS after biotreatment; however, the changes in engineering properties were found more moderate than clean biocemented sand. The conversion of Cr(VI) to Cr(III) followed by Cr2O3 precipitation in calcite lattice was observed. Zn was precipitated as smithsonite (ZnCO3), while no Pb precipitate was identified in XRD results. TCLP leaching showed Pb and Cr immobilized proportional to calcite precipitated amount, and higher calcite amounts yielded levels within regulatory limits. Pb and Cr(VI) immobilization up to 92 % and 94 % was achieved, respectively, in contaminated biocemented sand. Zn was found completely leachable as smithsonite is only stable down to pH~5, and strongly acidic TCLP solution reversed all immobilization at natural soil pH~8-9.
Collapse
Affiliation(s)
- Meghna Sharma
- Department of Civil Engineering, Indian Institute of Technology Indore, 453552, Madhya Pradesh, India
| | - Neelima Satyam
- Department of Civil Engineering, Indian Institute of Technology Indore, 453552, Madhya Pradesh, India.
| | - Krishna R Reddy
- Department of Civil, Materials, and Environmental Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Maria Chrysochoou
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
8
|
Sun X, Miao L, Wang H, Yuan J, Wu L. Research on freeze-thaw and dry-wet durability of enzymatic calcification for surface protection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16762-16771. [PMID: 35041172 DOI: 10.1007/s11356-022-18621-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The enzymatically induced carbonate precipitation (EICP) technique is currently studied for dust control because of the formation of cemented crust layer. In the present study, polyvinyl acetate (PVAc) was used with EICP together as the EICP-PVAc treatment to solidify dust soils. In addition, several treated dust soil areas always experience repeated freeze-thaw (FT) or dry-wet (DW) cycles, both of which result in the damage of structure. Therefore, the FT cycle test and the DW cycle test were conducted to study the durability of EICP-PVAc treatment. Results showed that both FT cycles and DW cycles affected the EICP-PVAc-treated dust soils. The wind-erosion resistance and rainfall-erosion resistance were impaired, and the surface strength decreased. However, the decreasing range resulted from the FT cycle was smaller than the decreasing range resulted from the DW cycle. It indicated the EICP-PVAc-treated dust soils had better FT durability, but the DW durability was worse. Moreover, a field test was used to study the durability of application of EICP-PVAc treatment in practical field test site. Based on the surface pattern observation after 9 months, the grasses in the treated area are in good growth condition; however, few grasses grew in the untreated area. The field test demonstrated that the combined EICP-PVAc and grass seeds treatment can ensure the long-term solidification effect and durability. The results lay a solid foundation for the applications of EICP-PVAc treatment to solidify dust soils for dust control.
Collapse
Affiliation(s)
- Xiaohao Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong.
| | - Linchang Miao
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Hengxing Wang
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Junhao Yuan
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Linyu Wu
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Influence of Culture Medium on Cementation of Coarse Grains Based on Microbially Induced Carbonate Precipitation. CRYSTALS 2022. [DOI: 10.3390/cryst12020188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A main challenge in the large-scale application of the microbially induced carbonate precipitation (MICP) technique includes the low efficiency of the cementation of coarse grains. Actually, in the MICP treatment process, the cementation effect of the bonding points was more important than pore filling due to the large porosity for coarse grains. To achieve a better cementation effect at bonding points between coarse particles, the quick formation and growth of a biofilm is necessary. In this study, an optimized medium was proposed to improve the cementation effects for coarse materials. The optimized medium and other different media were used for bio-cementation tests with MICP. The viable cell concentrations, strengths, microscopic characteristics, biofilm contents, and calcium carbonate (CaCO3) contents were used to evaluate the bio-cementation and its effects. In bio-cementation tests, the optimized medium led to increased CaCO3 precipitation at the bonding points and better cementation effects compared to other media. Indeed, the strength of the sample treated with the optimized medium was more than 1.2–4 times higher that of the values for other media. The advantages of the optimized medium were demonstrated via bio-cementation tests.
Collapse
|
10
|
Sun X, Miao L, Chen R, Wang H, Xia J. Surface rainfall erosion resistance and freeze-thaw durability of bio-cemented and polymer-modified loess slopes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113883. [PMID: 34601348 DOI: 10.1016/j.jenvman.2021.113883] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Microbially induced calcite precipitation (MICP) has been shown to mitigate sand erosion; however, few studies have applied MICP on loess soils. In this study, polyacrylamide (PAM) was added to the cementation solution, and combined MICP-PAM treatment was applied to improve the surface erosion resistance of loess-slopes. The freeze-thaw (FT) durability of MICP-PAM treated loess slopes was also studied. The obtained results showed that MICP-PAM treatment improved erosion resistance and addition of 1.5 g/L PAM achieved the best erosion control and highest surface strength. The high erosion resistance of MICP-PAM treated slopes could be attributed to the stable spatial structure of precipitation, and PAM addition conveyed stronger resistance to tension or shear force. With increasing number of FT cycles, the surface strength of MICP-PAM treated loess slopes decreased; however, slopes subjected to 12 FT cycles still only lost little soil. In MICP-PAM treated loess slopes, cracks and pores evolved with increasing number of FT cycles. With increasing number of FT cycles, porosity and fractal dimension increased, pore ellipticity decreased slightly, and the percentage of various pores changed slightly. The number of FT cycles had less effect on MICP-PAM treated loess slopes than on untreated slopes. MICP-PAM treatment significantly mitigated surface erosion of loess-slopes and improved FT weathering resistance, thus presenting promising potential for application in the field. In addition, based on the linear correlations between surface strength and rainfall-erosion resistance, surface strength could be measured to evaluate the rainfall-erosion resistance for MICP-PAM treated slopes in practical engineering applications.
Collapse
Affiliation(s)
- Xiaohao Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong.
| | - Linchang Miao
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Runfa Chen
- Beijing Urban Construction Group Co. Ltd, Beijing, 210096, China.
| | - Hengxing Wang
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Jingxin Xia
- School of Transportation, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
11
|
Sun X, Miao L, Wang H, Yuan J, Fan G. Enhanced rainfall erosion durability of enzymatically induced carbonate precipitation for dust control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148369. [PMID: 34126498 DOI: 10.1016/j.scitotenv.2021.148369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Globally, most cities are facing severe challenges caused by dust pollution. Recently, the significant dust control application potential of the environmentally friendly enzymatically induced carbonate precipitation (EICP) has been demonstrated. However, repeated rainfall erosion negatively affects the long-term durability of several EICP treated areas. This study applied EICP and added either polyvinyl acetate (PVAc) or polyethylene glycol (PEG) to the cementation solution. The results showed that both PVAc and PEG could improve the shear resistance and rainfall-erosion resistance of treated dust soils. However, for repeated rainfall erosion, the surface strength and calcium carbonate (CaCO3) contents of samples still decreased to less than 250 kPa and 1.1%, respectively. Therefore, combined EICP-PVAc-PEG treatment was proposed and the rainfall-erosion durability of treated dust soils was further studied. With the EICP-PVAc-PEG treatment, the dust samples achieved better shear resistance, higher surface strength, and better repeated rainfall-erosion resistance. Considering cost, cementation effects, and the effects of repeated rainfalls, EICP-PVAc-PEG treatment with 50 g/L PVAc and 30 g/L PEG was most suitable for dust control. The combined EICP-PVAc-PEG treatment significantly suppressed the generation of dust and improved the rainfall-erosion durability.
Collapse
Affiliation(s)
- Xiaohao Sun
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Linchang Miao
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Hengxing Wang
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Junhao Yuan
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Guangcai Fan
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
12
|
Improvement and Soil Consistency of Sand-Clay Mixtures Treated with Enzymatic-Induced Carbonate Precipitation. MATERIALS 2021; 14:ma14185140. [PMID: 34576362 PMCID: PMC8470128 DOI: 10.3390/ma14185140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022]
Abstract
Recently, microbially induced carbonate precipitation (MICP) has been studied as an alternative for the improvement of sand–clay mixtures. However, the cementing uniformity of MICP-treated sand–clay mixtures cannot be guaranteed. In this present study, enzymatic-induced carbonate precipitation (EICP) was used to deal with it. The ions used in kaolin clay was predicted to affect the production rate for calcium carbonate (CaCO3), which was studied using the calcification test. The solidification test was conducted using two different methods (the premixing method and the diffusion method). The permeability, unconfined compressive strength and the content of CaCO3 of treated samples were obtained to evaluate the solidification effect of the EICP method. Moreover, in EICP treatment, the particle aggregation decreased the liquid limit, but the addition of solution increased it. Therefore, there were contrary effects to the soil consistency. In this study, the two types of liquid limits of treated samples were measured with deionized water and 2M-NaCl brine, respectively. The results show that the Al2O3, NaCl and MgCl2 in the kaolin clay had a slight impact on the production rate for CaCO3, while FeCl3 significantly inhibited it. The EICP method can improve sand–clay mixtures and decrease their permeability. Different from MICP, the EICP method can guarantee the uniformity of treated samples. Moreover, the liquid limit of the sample treated with the premixing method decreased, while that of the sample treated with the diffusion method increased firstly and then decreased with the increasing treatment cycles. Different from the deionized water, the pore-fluid chemistry had a larger effect on the liquid limit with 2M-NaCl brine.
Collapse
|
13
|
Monitoring the Spatiotemporal Evolution of the Green Dam in Djelfa Province, Algeria. SUSTAINABILITY 2021. [DOI: 10.3390/su13147953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Green walls and green dams are increasingly being considered as part of many national and international desertification initiatives. This paper studies the spatiotemporal evolution of the green dam in the Moudjbara region (Djelfa Province, Algeria), from 1972 to 2019, by using Landsat imagery, Land Change Modeler, and OpenLand package. The future evolution of pine plantations, for the year 2029, was also forecasted, based on an anthropogenic scenario (i.e., anthropogenic pressure is the main driver of the green dam destruction). Our findings revealed that the green dam project was successful for a few years, but, after that, pine plantations deteriorated significantly, due to forest harvesting, livestock overgrazing, and the proliferation of the pine caterpillar processionary, which destroyed most of the reforestation. Land change modeler predicted a huge degradation of pine plantations for the year 2029, and if the deforestation continues at the same rate, the green dam in the Moudjbara region will disappear during the next few decades. Being aware of this threat, the Algerian authorities are now planning to reforest more than 1.2 million ha under the latest rural renewal policy, by introducing new principles related to sustainable development, fighting desertification, and climate change adaptation. We strongly recommend moving away from the singular tree planting focus, to diversifying desertification control methods.
Collapse
|