1
|
Sun S, Wang X, Cheng S, Lei Y, Sun W, Wang K, Li Z. A review of volatile fatty acids production from organic wastes: Intensification techniques and separation methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121062. [PMID: 38735068 DOI: 10.1016/j.jenvman.2024.121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
High value-added products from organic waste fermentation have garnered increasing concern in modern society. VFAs are short-chain fatty acids, produced as intermediate products during the anaerobic fermentation of organic matter. VFAs can serve as an essential organic carbon source to produce substitutable fuels, microbial fats and oils, and synthetic biodegradable plastics et al. Extracting VFAs from the fermentation broths is a challenging task as the composition of suspensions is rather complex. In this paper, a comprehensive review of methods for VFAs production, extraction and separation are provided. Firstly, the methods to enhance VFAs production and significant operating parameters are briefly reviewed. Secondly, the evaluation and detailed discussion of various VFAs extraction and separation technologies, including membrane separation, complex extraction, and adsorption methods, are presented, highlighting their specific advantages and limitations. Finally, the challenges encountered by different separation technologies and novel approaches to enhance process performance are highlighted, providing theoretical guidance for recycling VFAs from organic wastes efficiently.
Collapse
Affiliation(s)
- Shushuang Sun
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China.
| | - Xuemei Wang
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China.
| | - Shikun Cheng
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Yuxin Lei
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Wenjin Sun
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Kexin Wang
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Zifu Li
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China; International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
2
|
Yang L, Chen L, Zhao C, Li H, Cai J, Deng Z, Liu M. Biogas slurry recirculation regulates food waste fermentation: Effects and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119101. [PMID: 37748298 DOI: 10.1016/j.jenvman.2023.119101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Regularly adding biogas slurry into fermentation reactors is an effective way to enhance hydrogen or methane production. However, how this method affects the production of valuable organic acids and alcohols is still being determined. This study investigated the effects of different addition ratios on semi-continuous fermentation reactors using food waste as a substrate. The results showed that an addition ratio of 0.2 increased lactic acid production by 30% with a yield of 0.38 ± 0.01 g/g VS, while a ratio of 0.4 resulted in mixed acid fermentation dominated by n-butyric acid (0.07 ± 0.01 g/g VS) and n-caproic acid (0.06 ± 0.00 g/g VS). The introduction of Bifidobacteriaceae by biogas slurry played a crucial role in increasing lactic acid production. In contrast, exclusive medium-chain fatty acid producers enhanced the synthesis of caproic acid and heptanoic acid via the reverse β-oxidation pathway. Mechanism analyses suggested that microbial community structure and activity, substrate hydrolysis, and cell membrane transport system and structure changed to varying degrees after adding biogas slurry.
Collapse
Affiliation(s)
- Luxin Yang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Liang Chen
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Chuyun Zhao
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Huan Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Jiabai Cai
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura C-1-3, 615-8540, Kyoto, Japan
| | - Zhou Deng
- Shenzhen Lisai Environmental Technology Co. Ltm., Shenzhen, 518055, China
| | - Mengqian Liu
- Shenzhen Originwater Ecological Investment Construction Co., LTD, China
| |
Collapse
|
3
|
Jiang W, Tao J, Luo J, Xie W, Zhou X, Cheng B, Guo G, Ngo HH, Guo W, Cai H, Ye Y, Chen Y, Pozdnyakov IP. Pilot-scale two-phase anaerobic digestion of deoiled food waste and waste activated sludge: Effects of mixing ratios and functional analysis. CHEMOSPHERE 2023; 329:138653. [PMID: 37044139 DOI: 10.1016/j.chemosphere.2023.138653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/22/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Anaerobic co-digestion of deoiled food waste (dFW) and waste activated sludge (WAS) can address the challenges derived from mono-digestion of FW. In the present study, a pilot-scale methanogenic bioreactor of a two-phase anaerobic digestion system was developed to explore the impact of dFW/WAS volatile solids ratios on the overall performance, microbial community, and metabolic pathways. Besides, the tech-economic of the system was analyzed. The results showed that the degradation efficiency of soluble chemical oxygen demand (SCOD) was more than 84.90% for all the dFW/WAS ratios (v/v) (1:0, 39:1, 29:1, 19:1 and 9:1). Moreover, the dominant genus of bacteria and archaea with different ratios were Lactobacillus (66.84-98.44%) and Methanosaeta (53.66-80.09%), respectively. Co-digestion of dFW and WAS (29: 1 in v/v ratios) obtained the highest yield of methane (0.41 L CH4/Ladded) with approximately 90% of SCOD being removed. In the pilot-scale experiment, the co-digestion of FW and WAS makes positive contribution to reusing solid waste for improving solid management.
Collapse
Affiliation(s)
- Wei Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Jiale Tao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Jiwu Luo
- Central South Design and Research Institute of China Municipal Engineering Co., Ltd., Wuhan, Hubei, 430014, China
| | - Wengang Xie
- Central South Design and Research Institute of China Municipal Engineering Co., Ltd., Wuhan, Hubei, 430014, China
| | - Xiaojuan Zhou
- Central South Design and Research Institute of China Municipal Engineering Co., Ltd., Wuhan, Hubei, 430014, China
| | - Boyi Cheng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Gang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Hui Cai
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.
| | - Yiqun Chen
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Ivan P Pozdnyakov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation
| |
Collapse
|
4
|
Wang YN, Wang Q, Li Y, Wang H, Gao Y, Sun Y, Wang B, Bian R, Li W, Zhan M. Impact of incineration slag co-disposed with municipal solid waste on methane production and methanogens ecology in landfills. BIORESOURCE TECHNOLOGY 2023; 377:128978. [PMID: 36990329 DOI: 10.1016/j.biortech.2023.128978] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Co-landfill of incineration slag and municipal solid waste (MSW) is a main method for disposal of slag, and it has the potential of promoting methane (CH4) production and accelerating landfill stabilization. Four simulated MSW landfill columns loaded with different amount of slag (A, 0%; B, 5%; C, 10%; D, 20%) were established, and the CH4 production characteristics and methanogenic mechanisms were investigated. The maximum CH4 concentration in columns A, B, C and D was 10.8%, 23.3%, 36.3% and 34.3%, respectively. Leachate pH and refuse pH were positively correlated with CH4 concentration. Methanosarcina was the dominant genus with abundance of 35.1%∼75.2% and it was positively correlated with CH4 concentration. CO2-reducing and acetoclastic methanogenesis were the main types of methanogenesis pathway, and the methanogenesis functional abundance increased with slag proportion during stable methanogenesis process. This research can help understanding the impact of slag on CH4 production characteristics and microbiological mechanisms in landfills.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Qingzhao Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Yahui Li
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Huawei Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China.
| | - Ying Gao
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Bingpeng Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Rongxing Bian
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Weihua Li
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Meili Zhan
- Qingdao Solid Waste Disposal Co LTD, China
| |
Collapse
|
5
|
Jin R, Xu J, Wang Z, Zhu N, Lou Z, Yuan H. Successive choline addition enhancing the methanogenesis of waste activated sludge anaerobic digestion: Insight from hydrophilicity, electrochemical performance and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116899. [PMID: 36459781 DOI: 10.1016/j.jenvman.2022.116899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic digestion (AD) is a promising technology to treat waste-activated sludge, previous study proved that methane production could be enhanced with the addition of choline, this work aimed to solve the problem of rapid biodegradability of choline in the AD process by changing its dosing method. With 0.75 g/L as the optimal choline dosing concentration, experimental results showed that successive choline dosing during the first 3-6 days of AD (experimental groups, EGs) performed better than the single dosing. The accumulative biogas production in EGs was increased by 35.55-36.73%, which could be caused by the simultaneous promotion of hydrolysis-acidification and methanogenesis processes. Especially, the electron exchange capacity of digested sludge in EGs was increased by 16.71-34.58%. In addition, the surface Gibbs free energy (△GSL) of sludge in EGs was 105.51-172.21% higher (corresponding to stronger hydrophilicity and repulsion), which might help disperse sludge flocs and improve mass transfer efficiency, and the △GSL values were positively correlated with the accumulative methane production (R2 = 0.7029). Microbiological analysis showed that microbial communities in EGs were richer and Methanosaeta was regarded as the dominant species with 15.93-30.08% higher relative abundance with choline addition. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, EGs were found to be more active in metabolism clusters. Collectively, these findings demonstrated that successive choline dosing during the first 3-6 days is an effective and novel method to enhance methane production in AD process.
Collapse
Affiliation(s)
- Rong Jin
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiajia Xu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhuoqin Wang
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ziyang Lou
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
6
|
Saravanan A, Senthil Kumar P, Rangasamy G, Hariharan R, Hemavathy RV, Deepika PD, Anand K, Karthika S. Strategies for enhancing the efficacy of anaerobic digestion of food industry wastewater: An insight into bioreactor types, challenges, and future scope. CHEMOSPHERE 2023; 310:136856. [PMID: 36243094 DOI: 10.1016/j.chemosphere.2022.136856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Food waste have become a growing concern worldwide with raising population and economic growth. Wastewater discharged from food industries contains many valuable and toxic components that have a negative impact on the ecological system. Large amounts of wastewater are discharged from the food industry, which necessitates the creation of effective technologies. Wastewater from the food industry can be seen as a rich source of energy and a primary source for generating valuable products. Waste disposal and resource recovery are sustainably valued by anaerobic digestion of wastewater from the food sector. The characteristics, composition, and nature of wastewater produced from various food sectors are elaborated upon in this review. An overview of the anaerobic digestion process for wastewater treatment in the food industry is included. Enhancement strategies for the anaerobic digestion process have been discussed in detail. In addition, various types of reactors utilized for performing anaerobic digestion is illustrated. Though anaerobic digestion process possesses advantages, the challenges and future scope are examined for improving the outcome.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - R Hariharan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P D Deepika
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - Krithika Anand
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - S Karthika
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| |
Collapse
|
7
|
Zhang L, Yao D, Tsui TH, Loh KC, Wang CH, Dai Y, Tong YW. Plastic-containing food waste conversion to biomethane, syngas, and biochar via anaerobic digestion and gasification: Focusing on reactor performance, microbial community analysis, and energy balance assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114471. [PMID: 35026716 DOI: 10.1016/j.jenvman.2022.114471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 05/27/2023]
Abstract
To manage the mixture of food waste and plastic waste, a hybrid biological and thermal system was investigated for converting plastic-containing food waste (PCFW) into renewable energy, focusing on performance evaluation, microbial community analysis, and energy balance assessment. The results showed that anaerobic digestion (AD) of food waste, polyethylene (PE)-containing food waste, polystyrene (PS)-containing food waste, and polypropylene (PP)-containing food waste generated a methane yield of 520.8, 395.6, 504.2, and 479.8 mL CH4/gVS, respectively. CO2 gasification of all the plastic-containing digestate produced more syngas than pure digestate gasification. Syngas from PS-digestate reached the maximum yield of 20.78 mol/kg. During the digestate-derived-biochar-amended AD of PCFW, the methane yields in the biochars-amended digesters were 6-30% higher than those of the control digesters. Bioinformatic analysis of microbial communities confirmed the significant difference between control and biochar-amended digesters in terms of bacterial and methanogenic compositions. The enhanced methane yields in biochars-amended digesters could be partially ascribed to the selective enrichment of genus Methanosarcina, leading to an improved equilibrium between hydrogenotrophic and acetoclastic methanogenesis pathways. Moreover, energy balance assessment demonstrated that the hybrid biological and thermal conversion system can be a promising technical option for the treatment of PCFW and recovery of renewable biofuels (i.e., biogas and syngas) and bioresource (i.e., biochar) on an industrial scale.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Dingding Yao
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - To-Hung Tsui
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Kai-Chee Loh
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Chi-Hwa Wang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yanjun Dai
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
8
|
Kabaivanova L, Hubenov V, Dimitrova L, Simeonov I, Wang H, Petrova P. Archaeal and Bacterial Content in a Two-Stage Anaerobic System for Efficient Energy Production from Agricultural Wastes. Molecules 2022; 27:1512. [PMID: 35268611 PMCID: PMC8911581 DOI: 10.3390/molecules27051512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Anaerobic digestion (AD) is a microbially-driven process enabling energy production. Microorganisms are the core of anaerobic digesters and play an important role in the succession of hydrolysis, acidogenesis, acetogenesis, and methanogenesis processes. The diversity of participating microbial communities can provide new information on digester performance for biomass valorization and biofuel production. In this study anaerobic systems were used, operating under mesophilic conditions that realized biodegradation processes of waste wheat straw pretreated with NaOH-a renewable source for hydrogen and methane production. These processes could be managed and optimized for hydrogen and methane separately but combining them in a two-stage system can lead to higher yields and a positive energy balance. The aim of the study was to depict a process of biohydrogen production from lignocellulosic waste followed by a second one leading to the production of biomethane. Archaeal and bacterial consortia in a two-stage system operating with wheat straw were identified for the first time and the role of the most important representatives was elucidated. The mixed cultures were identified by the molecular-biological methods of metagenomics. The results showed that biohydrogen generation is most probably due to the presence of Proteiniphilum saccharofermentans, which was 28.2% to 45.4% of the microbial community in the first and the second bioreactor, respectively. Archaeal representatives belonging to Methanobacterium formicicum (0.71% of the community), Methanosarcina spelaei (0.03%), Methanothrix soehngenii (0.012%), and Methanobacterium beijingense (0.01%) were proven in the methane-generating reactor. The correlation between substrate degradation and biogas accumulation was calculated, together with the profile of fatty acids as intermediates produced during the processes. The hydrogen concentration in the biogas reached 14.43%, and the Methane concentration was 69%. Calculations of the energy yield during the two-stage process showed 1195.89 kWh·t-1 compared to a 361.62 kWh·t-1 cumulative yield of energy carrier for a one-stage process.
Collapse
Affiliation(s)
- Lyudmila Kabaivanova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (V.H.); (L.D.); (I.S.)
| | - Venelin Hubenov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (V.H.); (L.D.); (I.S.)
| | - Lyudmila Dimitrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (V.H.); (L.D.); (I.S.)
| | - Ivan Simeonov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (V.H.); (L.D.); (I.S.)
| | - Haoping Wang
- French-Chinese Laboratory LaFCAS, School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China;
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (V.H.); (L.D.); (I.S.)
| |
Collapse
|
9
|
Liu J, Zuo X, Peng K, He R, Yang L, Liu R. Biogas and Volatile Fatty Acid Production During Anaerobic Digestion of Straw, Cellulose, and Hemicellulose with Analysis of Microbial Communities and Functions. Appl Biochem Biotechnol 2022; 194:762-782. [PMID: 34524637 DOI: 10.1007/s12010-021-03675-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
The anaerobic digestion efficiency and methane production of straw was limited by its complex composition and structure. In this study, rice straw (RS), cellulose, and hemicellulose were used as raw materials to study biogas production performance and changes in the volatile fatty acids (VFAs). Further, microbial communities and genetic functions were analyzed separately for each material. The biogas production potential of RS, cellulose, and hemicellulose was different, with cumulative biogas production of 283.75, 412.50, and 620.64 mL/(g·VS), respectively. The methane content of the biogas produced from cellulose and hemicellulose was approximately 10% higher than that produced from RS after the methane content stabilized. The accumulation of VFAs occurred in the early stage of anaerobic digestion in all materials, and the cumulative amount of VFAs in both cellulose and hemicellulose was relatively higher than that in RS, and the accumulation time was 12 and 14 days longer, respectively. When anaerobic digestion progressed to a stable stage, Clostridium was the dominant bacterial genus in all three anaerobic digestion systems, and the abundance of Ruminofilibacter was higher during anaerobic digestion of RS. Genetically, anaerobic digestion of all raw materials proceeded mainly via aceticlastic methanogenesis, with similar functional components. The different performance of anaerobic digestion of RS, cellulose, and hemicellulose mainly comes from the difference of composition of raw materials. Increasing the accessibility of cellulose and hemicellulose in RS feedstock by pretreatment is an effective way to improve the efficiency of anaerobic digestion. Since the similar microbial community structure will be acclimated during anaerobic digestion, there is no need to adjust the initial inoculum when the accessibility of cellulose and hemicellulose changes.
Collapse
Affiliation(s)
- Jie Liu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, People's Republic of China
| | - Xiaoyu Zuo
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, People's Republic of China.
| | - Ke Peng
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, People's Republic of China
| | - Rui He
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, People's Republic of China
| | - Luyao Yang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, People's Republic of China
| | - Rufei Liu
- China Urban Construction Design & Research Institute, No.36, Deshengmenwai Street, Beijing, China
| |
Collapse
|
10
|
Kumar Awasthi M, Wainaina S, Mahboubi A, Zhang Z, Taherzadeh MJ. Methanogen and nitrifying genes dynamics in immersed membrane bioreactors during anaerobic co-digestion of different organic loading rates food waste. BIORESOURCE TECHNOLOGY 2021; 342:125920. [PMID: 34534942 DOI: 10.1016/j.biortech.2021.125920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
This work was aimed to evaluate the distinctive food waste (FW) organic loading rates (OLR) on methanogen and nitrifying genes dynamics and its correlation with identified relative abundance of bacterial dynamics during the anaerobic digestion. This experiment were carried out in the digesters at high OLR of food wastes at (4 to 8 g volatile solids/liter/day reactor R1) and (6 to 10 g volatile solids/liter/day reactor R2). The results shown that the relative abundance of mcrA, mcrB and mcrG genes were richest in the first day of both R1 and R2. In addition, the most of nitrifying genes were greater in after 34 days digestion in R2, while these genes did not show the specific regularity in R1. Finally, the correlation figure shows that Clostridium and Lactobacillus genera were significantly correlated with the different organic acids and methanogen and nitrifying genes dynamics.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| | - Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | |
Collapse
|