2
|
Tian S, Gong X, Yu Q, Yao F, Li W, Guo Z, Zhang X, Yuan Y, Fan Y, Bian R, Wang Y, Zhang X, Li L, Pan G. Efficient removal of Cd(II) and Pb(II) from aqueous solution using biochars derived from food waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122364-122380. [PMID: 37966646 DOI: 10.1007/s11356-023-30777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023]
Abstract
Massive amount of food waste has been generated annually, posing a threat to ecological sustainability and the social economy due to current disposal methods. Urgent action is needed worldwide to convert the traditional pathway for treating food waste into a sustainable bioeconomy, as this will significantly benefit food chain management. This study explores the use of pyrolysis to produce different types of food waste biochars and investigates their adsorption capabilities for removing Cd2+ and Pb2+ in aqueous solution. The results indicated that co-pyrolysis biochar from fresh food waste and rice husk (FWRB) exhibited superior adsorption performance for Cd2+ (61.84 mg·g-1) and Pb2+ (245.52 mg·g-1), respectively. Pseudo-second-order kinetics (0.74 ≤ R2 ≤ 0.98) and Langmuir isotherms (0.87 ≤ R2 ≤ 0.98) indicated that the immobilized Cd2+ and Pb2+ on biochars were mainly attributed to the chemisorption, including precipitation with minerals (e.g., carbonates, silicates, and phosphate), complexation with functional groups (-OH), cation exchange (-COO-), and coordination with π-electrons. Furthermore, FWRB demonstrated reduced EC and Na content in comparison to food waste digestate biochar (FWDB) and food waste digestate co-pyrolysis with sawdust biochar (FWSB), with levels of Cd and Pb falling below China's current guideline thresholds. These findings suggested that co-pyrolysis of fresh food waste with rice husk could be applicable to the recycling of food waste into biochar products for heavy metal stabilization in contaminated water and soils.
Collapse
Affiliation(s)
- Shuai Tian
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xueliu Gong
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Qiuyu Yu
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Fei Yao
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Wenjian Li
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jinhua Biomass Technology Institute, Jinhua Municipality, Zhejiang, 321000, China
| | - Zilin Guo
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xin Zhang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Yuan Yuan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Yuqing Fan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Rongjun Bian
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| | - Yan Wang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xuhui Zhang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Lianqing Li
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Genxing Pan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| |
Collapse
|
3
|
Kypritidou Z, El-Bassi L, Jellali S, Kinigopoulou V, Tziritis E, Akrout H, Jeguirim M, Doulgeris C. Lead removal from aqueous solutions by olive mill wastes derived biochar: Batch experiments and geochemical modelling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115562. [PMID: 35764000 DOI: 10.1016/j.jenvman.2022.115562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
In this study, lead removal from aqueous solutions using biochar derived from olive mill solid and liquid wastes has been investigated by applying batch experiments and geochemical modelling. The batch adsorption experiments included the assessment of several key parameters such as the contact time (kinetic), initial concentration (isotherm), pH, adsorbent dose, and the presence of competitive cations, whilst the geochemical modelling focused on the involved adsorption mechanisms using the PHREEQC code. The kinetic studies showed that lead adsorption is a relatively fast process, where intraparticle diffusion is the rate-limiting step. Biochar dose, solution pH and the presence of competitive ions significantly affected the Pb adsorption effectiveness by the biochar. Especially the higher Pb removal percentages were observed in mono-elemental solutions with high biochar dose at mildly acidic solution pH values. The maximum Pb adsorption capacity of biochar was estimated as 40.8 mg g-1 which is higher than various biochars derived from sludge, lignocellulosic and animal biomasses. On the other hand, the geochemical modelling employing the PHREEQC code showed that ion exchange and Pb precipitation are the main reactions controlling its removal from aqueous solutions, whilst surface complexation is insignificant, mainly due to the low surface functional groups on the used biochar.
Collapse
Affiliation(s)
- Zacharenia Kypritidou
- Dept. of Economic Geology and Geochemistry, Faculty of Geology and Geo-environment, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Leila El-Bassi
- Wastewaters and Environment Laboratory, Water Research and Technologies Center (CERTE), Technopark Borj Cedria, University of Carthage, P.O.Box 273, Soliman, 8020, Tunisia
| | - Salah Jellali
- Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Vasiliki Kinigopoulou
- Soil and Water Resources Institute (SWRI), Hellenic Agricultural Organisation, 574 00, Sindos, Greece
| | - Evangelos Tziritis
- Soil and Water Resources Institute (SWRI), Hellenic Agricultural Organisation, 574 00, Sindos, Greece
| | - Hanene Akrout
- Wastewaters and Environment Laboratory, Water Research and Technologies Center (CERTE), Technopark Borj Cedria, University of Carthage, P.O.Box 273, Soliman, 8020, Tunisia
| | - Mejdi Jeguirim
- Université de Haute-Alsace, CNRS, Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361, F-68100, Mulhouse, France
| | - Charalampos Doulgeris
- Soil and Water Resources Institute (SWRI), Hellenic Agricultural Organisation, 574 00, Sindos, Greece.
| |
Collapse
|
4
|
Akar T, Can ÜGU, Celik S, Sayin F, Akar ST. A hybrid biocomposite of Thamnidium elegans/olive pomace/chitosan for efficient bioremoval of toxic copper. Int J Biol Macromol 2022; 221:865-873. [PMID: 36063895 DOI: 10.1016/j.ijbiomac.2022.08.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/05/2022]
Abstract
Immobilized biomaterials have recently attracted researchers' attention in the field of environmental biotechnology due to their effective biosorption performances. In this respect, a novel hybrid biocomposite based on Thamnidium elegans cells, olive pomace, and chitosan (TE-OP@C) was produced and tested for the first time to remove a target pollutant. It was successfully employed to eliminate toxic Cu (II) ions. Uptake efficiency of the biocomposite was significantly greater than that of T. elegans and T. elegans-olive pomace, despite the much lesser amount of biocomposite used. Freundlich model best fitted the equilibrium data, and the pseudo-second-order kinetic model followed uptake. The maximum removal efficiencies in batch and continuous systems were determined to be 96 % and 98 %, respectively. After eight cycles, the biosorption and recovery efficiencies of TE-OP@C were higher than 90 %. Biocomposite was able to remove approximately 90 % and 88 % of Cu(II) from real wastewater in batch and continuous systems, respectively. FTIR analysis, zeta potential measurements, EDX, and SEM findings confirmed the Cu(II) uptake. XRD and BET analysis were also performed for biocomposite characterization. Breakthrough and exhausted points were determined as 80 and 150 min, respectively. The findings potentially lead to a new perspective for the treatment of copper contamination.
Collapse
Affiliation(s)
- Tamer Akar
- Eskisehir Osmangazi University, Faculty of Science, Department of Chemistry, TR-26040 Eskisehir, Turkey.
| | - Ümmü Gülsüm Uzunel Can
- Eskisehir Osmangazi University, Graduate School of Natural and Applied Sciences, Department of Chemistry, 26040 Eskisehir, Turkey
| | - Sema Celik
- Eskisehir Osmangazi University, Faculty of Science, Department of Chemistry, TR-26040 Eskisehir, Turkey
| | - Fatih Sayin
- Eskisehir Osmangazi University, Faculty of Science, Department of Chemistry, TR-26040 Eskisehir, Turkey
| | - Sibel Tunali Akar
- Eskisehir Osmangazi University, Faculty of Science, Department of Chemistry, TR-26040 Eskisehir, Turkey
| |
Collapse
|
6
|
Berslin D, Reshmi A, Sivaprakash B, Rajamohan N, Kumar PS. Remediation of emerging metal pollutants using environment friendly biochar- Review on applications and mechanism. CHEMOSPHERE 2022; 290:133384. [PMID: 34952021 DOI: 10.1016/j.chemosphere.2021.133384] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/09/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Bioremediation of heavy metals has become a major environmental concern due to their bio resistant nature and tendency to accumulate. Application of various technologies, involving physical and chemical working principles are applied and passive uptake using sorption involving eco-friendly substrates gained significant attention. Biochar, a cheaper and efficient material, offers good potential due to the greater ease of production, treatment and disposal. This review focuses on the effective application of biochar to treat water contaminated by three specific heavy metals: chromium, lead and arsenic. The on-field applications like soil amendment, industrial wastewater treatment and groundwater treatment using biochar are highlighted. The review article describes the feedstock available for biochar production, various production processes and the importance of optimum conditions like pyrolysis temperature, rate and retention time for various feedstocks reported in literature. The energy requirement of the production process can be supplied by its own energy output. Various modifications that are suitable for the biochar from distinct feedstocks are also discussed. The removal performance of biochar at different working conditions like pH, initial concentration of pollutant and adsorbent dose are consolidated. The highest removal efficiencies reported were by coconut shell biochar (Cr - 99.9%), canola straw biochar (Pb - 100%) and perilla leaf biochar (As - 100%). The adsorption mechanism is explained with reference to kinetics, isotherms, and molecular dynamics. Adsorption mechanism of most of the biochars was found to fit either Freundlich or Langmuir isotherm.
Collapse
Affiliation(s)
- Don Berslin
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, PC-608002, India
| | - Angelin Reshmi
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, PC-608002, India
| | - Baskaran Sivaprakash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, PC-608002, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, PC-311, Oman.
| | - P Senthil Kumar
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| |
Collapse
|
7
|
Hemavathy RV, Saravanan A, Kumar PS, Vo DVN, Karishma S, Jeevanantham S. Adsorptive removal of Pb(II) ions onto surface modified adsorbents derived from Cassia fistula seeds: Optimization and modelling study. CHEMOSPHERE 2021; 283:131276. [PMID: 34182625 DOI: 10.1016/j.chemosphere.2021.131276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Cassia fistula seeds has been utilized for the abstraction of Pb(II) ions from the aqueous environment. Raw Cassia fistula seeds (RCF) and three different surface modified (physically treated - PMCF and chemically treated - HMCF and SMCF) adsorbent material were taken for investigation. The adsorption properties of these materials and their contact amongst the Pb(II) ion and sorbent materials were characterized by FTIR and SEM analysis. The parameters influencing the adsorption capacity of varied adsorbents were evaluated: maximum solution pH for Pb(II) is 5.0; interactive time is 30 min; dosage is 8.0 g/L for RCF, 4.0 g/L for HMCF, 2.5 g/L for PMCF and 1.0 g/L for SMCF. The modelling study reveals that Freundlich isotherm and Pseudo first order kinetics fits well and the utmost adsorption measurements for the varied adsorbents were found to be 13.22, 28.28, 48.66 and 129.3 mg/g, respectively.
Collapse
Affiliation(s)
- R V Hemavathy
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| |
Collapse
|