1
|
Xie Y, Chen W, Ye Z, Yan J, Yu X, Feng M. Mechanistic insight into the environmental fate of highly concerned transformation products of aqueous micropollutants during the solar/chlorine treatment. WATER RESEARCH 2025; 278:123413. [PMID: 40043573 DOI: 10.1016/j.watres.2025.123413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/14/2025] [Accepted: 02/27/2025] [Indexed: 04/14/2025]
Abstract
Transformation products (TPs) arising from the degradation of micropollutants have been frequently detected in various water bodies and may exhibit higher toxicity than their parent compounds. However, the current understanding of their chemical reactivity remains limited, and the mechanisms underlying the solar-driven oxidation processes (e.g., solar/chlorine system) of TPs have not been well investigated. This study explored the elimination of six typical TPs derived from carbamazepine (CBZ) and atrazine (ATZ) by solar/oxidant systems. It was observed that these TPs could be effectively degraded in the solar/oxidant systems, except for the solar/hydrogen peroxide system. The reactivity evaluation and quantitative contribution analysis revealed that hydroxyl radicals (•OH) and ozone played pivotal roles in the removal of all six typical TPs by the solar/chlorine system, whereas the reactive chlorine species contributed minimally. The transformation mechanisms of carbamazepine 10, 11-epoxide (CBZ-EP) involved hydroxyl addition and electron transfer, while the TPs of ATZ underwent dealkylation only. The computational study indicated that •OH primarily reacted with CBZ-EP via radical addition reaction. Furthermore, the TPs of CBZ-EP and hydroxyatrazine showed no obvious change in environmental persistence but enhanced mobility and toxicity compared to the parent compounds, implying treatment-driven secondary risks. Overall, this investigation provided an in-depth mechanistic exploration of the transformation behaviors, fate, and secondary environmental risks of highly concerned TPs under the solar/oxidant treatments.
Collapse
Affiliation(s)
- Yuwei Xie
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Wenzheng Chen
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Zhantu Ye
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Junmei Yan
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
2
|
Nippes RP, Gomes AD, Macruz PD, de Souza M. Photocatalytic removal of 17β-estradiol from water using a novel bimetallic NiCu/Nb 2O 5 catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103731-103742. [PMID: 37688700 DOI: 10.1007/s11356-023-29727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
The development of effective photocatalytic materials is essential for removing emerging pollutants from aqueous media, such as the hormone 17β-estradiol (E2). In this study, a novel photocatalyst based on niobium pentoxide (Nb2O5) functionalized with nickel (Ni) and copper (Cu) was synthesized for E2 removal. The NiCu/Nb2O5 photocatalyst was prepared using a facile wet impregnation method and characterized by various techniques. The incorporation of Ni and Cu into Nb2O5 reduced the band gap energy from 3.3 to 2.8 eV, enabling efficient utilization of visible light. Moreover, NiCu/Nb2O5 exhibited the highest E2 removal efficiency (82%) under UV-A-assisted conditions at a concentration of 1.5 g L-1. The reaction kinetics were found to follow a second-order model with a rate constant of k = 0.0020 L g-1 min-1, and a plausible reaction mechanism was proposed. Through the study of radical elimination, it was proven that the radical oxidation reaction mechanism predominated in the reaction. The results of the toxicity assays, combined with the TOC parameter, demonstrated the efficacy of photocatalytic degradation in reducing E2. These findings demonstrate the great potential of the NiCu/Nb2O5 photocatalyst for removing persistent pollutants.
Collapse
Affiliation(s)
- Ramiro Picoli Nippes
- Chemical Engineering Department of Maringa State University, Maringa, PR, Av. Colombo Zone 7, Brazil, 579087020-900.
| | - Aline Domingues Gomes
- Chemical Engineering Department of Maringa State University, Maringa, PR, Av. Colombo Zone 7, Brazil, 579087020-900
| | - Paula Derksen Macruz
- Chemical Engineering Department of Maringa State University, Maringa, PR, Av. Colombo Zone 7, Brazil, 579087020-900
| | - Marcos de Souza
- Chemical Engineering Department of Maringa State University, Maringa, PR, Av. Colombo Zone 7, Brazil, 579087020-900
| |
Collapse
|
3
|
Pacheco-Álvarez M, Picos Benítez R, Rodríguez-Narváez OM, Brillas E, Peralta-Hernández JM. A critical review on paracetamol removal from different aqueous matrices by Fenton and Fenton-based processes, and their combined methods. CHEMOSPHERE 2022; 303:134883. [PMID: 35577132 DOI: 10.1016/j.chemosphere.2022.134883] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Paracetamol (PCT), also known as acetaminophen, is a drug used to treat fever and mild to moderate pain. After consumption by animals and humans, it is excreted through the urine to the sewer systems, wastewater treatment plants, and other aquatic/natural environments. It has been detected in trace amounts in effluents of wastewater plant treatments, sewage sludge, hospital wastewaters, surface waters, and drinking water. PCT can cause genetic code damage, oxidative degradation of lipids, and denaturation of protein in cells, and its toxicity has been well-proven in bacteria, algae, macrophytes, protozoan, and fishes. To avoid its harmful health problems over living beings, powerful Fenton and Fenton-based treatments as pre-eminent advanced oxidation processes (AOPs) have been developed because of the inefficient treatment by conventional treatments. This paper presents a comprehensive and critical review over the application of such Fenton technologies to remove PCT from natural waters, synthetic wastewaters, and real wastewaters. The characteristics and main results obtained using Fenton, photo-Fenton, electro-Fenton, and photoelectro-Fenton are described, making special emphasis in the oxidative action of the generated reactive oxygen species. Hybrid processes based on the coupling with ultrasounds, gamma radiation, photocatalysis, photoelectrocatalysis, zero-valent iron-activated persulfate, adsorption, and microbial fuel cells, are analyzed. Sequential treatments involving the initiation with plasma gliding arc discharge and post-biological process are detailed. Comparative results with other available AOPs are also described and discussed. Finally, 13 aromatic by-products and 9 short-linear aliphatic carboxylic acid detected during the PCT removal by Fenton and Fenton-based processes are reported, with the proposal of three parallel pathways for its initial degradation.
Collapse
Affiliation(s)
- Martin Pacheco-Álvarez
- Departamento de Química, DCNE, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, Guanajuato, C.P. 36040, Mexico
| | - Ricardo Picos Benítez
- Centro de Estudios Científicos y Tecnológicos No. 18, Instituto Politécnico Nacional, 98160, Zacatecas, Zac., Mexico
| | - Oscar M Rodríguez-Narváez
- Dirección de Investigación y Soluciones Tecnológicas, Centro de Innovación Aplicado en Tecnologías Competitivas, Omega 201, Leon, Guanajuato, 37545, Mexico
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Juan M Peralta-Hernández
- Departamento de Química, DCNE, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, Guanajuato, C.P. 36040, Mexico.
| |
Collapse
|
4
|
Duong HTT, Duong MTP, Nguyen OK, Le ST, Dang LV, Nguyen BT, Do DV. Photocatalytic Activity of Ti-SBA-15/C3N4 for Degradation of 2,4-Dichlorophenoxyacetic Acid in Water under Visible Light. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:5531219. [PMID: 35360448 PMCID: PMC8964217 DOI: 10.1155/2022/5531219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
In the present study, the photocatalytic activity of Ti-SBA-15/C3N4 catalysts was investigated to degrade 2,4-Dichlorophenoxyacetic acid (2,4-D) herbicides in water under visible light irradiation. The catalysts were synthesized via a simple hydrothermal method and characterized by various analytical techniques, including SAXS, N2 adsorption-desorption isotherms, Zeta potential, PL, FT-IR, XRF, TGA, and UV-DRS. Our study indicated that the 2.5Ti-SBA-15/C3N4 had higher efficiency in the degradation of 2,4-D than Ti-SBA-15 and C3N4. The decomposition of 2,4-D reached 60% under 180 minutes of visible light irradiation at room temperature on 2.5Ti-SBA-15/C3N4. Moreover, the degradation of 2,4-D on Ti-SBA-15/C3N4 was pseudo-first-order kinetics with the highest rate constant (0.00484 min-1), which was much higher than that obtained for other photocatalysts reported recently. Furthermore, the catalyst can be reused at least two times for photodegradation of 2,4-D solution under visible light irradiation within a slight decrease in catalytic activity.
Collapse
Affiliation(s)
- Hoa T. T. Duong
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Ha Noi 19 Le Thanh Tong Hoan Kiem, Hanoi 100000, Vietnam
| | - Mai T. P. Duong
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Ha Noi 19 Le Thanh Tong Hoan Kiem, Hanoi 100000, Vietnam
| | - Oanh K. Nguyen
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Ha Noi 19 Le Thanh Tong Hoan Kiem, Hanoi 100000, Vietnam
| | - Son T. Le
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Ha Noi 19 Le Thanh Tong Hoan Kiem, Hanoi 100000, Vietnam
| | - Long V. Dang
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Ha Noi 19 Le Thanh Tong Hoan Kiem, Hanoi 100000, Vietnam
| | - Binh T. Nguyen
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Ha Noi 19 Le Thanh Tong Hoan Kiem, Hanoi 100000, Vietnam
| | - Dang V. Do
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Ha Noi 19 Le Thanh Tong Hoan Kiem, Hanoi 100000, Vietnam
| |
Collapse
|
5
|
Achieving Electrochemical-Sustainable-Based Solutions for Monitoring and Treating Hydroxychloroquine in Real Water Matrix. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydroxychloroquine (HCQ) has been extensively consumed due to the Coronavirus (COVID-19) pandemic. Therefore, it is increasingly found in different water matrices. For this reason, the concentration of HCQ in water should be monitored and the treatment of contaminated water matrices with HCQ is a key issue to overcome immediately. Thus, in this study, the development of technologies and smart water solutions to reach the Sustainable Development Goal 6 (SDG6) is the main objective. To do that, the integration of electrochemical technologies for their environmental application on HCQ detection, quantification and degradation was performed. Firstly, an electrochemical cork-graphite sensor was prepared to identify/quantify HCQ in river water matrices by differential pulse voltammetric (DPV) method. Subsequently, an HCQ-polluted river water sample was electrochemically treated with BDD electrode by applying 15, 30 and 45 mA cm−2. The HCQ decay and organic matter removal was monitored by DPV with composite sensor and chemical oxygen demand (COD) measurements, respectively. Results clearly confirmed that, on the one hand, the cork-graphite sensor exhibited good current response to quantify of HCQ in the river water matrix, with limit of detection and quantification of 1.46 mg L−1 (≈3.36 µM) and 4.42 mg L−1 (≈10.19 µM), respectively. On the other hand, the electrochemical oxidation (EO) efficiently removed HCQ from real river water sample using BDD electrodes. Complete HCQ removal was achieved at all applied current densities; whereas in terms of COD, significant removals (68%, 71% and 84% at 15, 30 and 45 mA cm−2, respectively) were achieved. Based on the achieved results, the offline integration of electrochemical SDG6 technologies in order to monitor and remove HCQ is an efficient and effective strategy.
Collapse
|
6
|
Nippes RP, Macruz PD, da Silva GN, Neves Olsen Scaliante MH. A critical review on environmental presence of pharmaceutical drugs tested for the covid-19 treatment. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2021; 152:568-582. [PMID: 34226801 PMCID: PMC8243632 DOI: 10.1016/j.psep.2021.06.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 05/11/2023]
Abstract
On March 11, 2020, the World Health Organization (WHO) declared COVID-19 a pandemic. The outbreak caused a worldwide impact, becoming a health threat to the general population and its professionals. To date, there are no specific antiviral treatments or vaccines for the COVID-19 infection, however, some drugs are being clinically tested. The use of these drugs on large scale raises great concern about their imminent environmental risk, since the elimination of these compounds by feces and urine associated with the inefficiency of sewage treatment plants in their removal can result in their persistence in the environment, putting in risk the health of humans and of other species. Thus, the goal of this work was to conduct a review of other studies that evaluated the presence of the drugs chloroquine, hydroxychloroquine, azithromycin, ivermectin, dexamethasone, remdesivir, favipiravir and some HIV antivirals in the environment. The research indicated the presence of these drugs in the environment in different regions, with concentration data that could serve as a basis for further comparative studies following the pandemic.
Collapse
Affiliation(s)
- Ramiro Picoli Nippes
- State University of Maringa, Department of Chemical Engineering, Maringa, 87020-900, Parana, Brazil
| | - Paula Derksen Macruz
- State University of Maringa, Department of Chemical Engineering, Maringa, 87020-900, Parana, Brazil
| | | | | |
Collapse
|