1
|
Patel RV, Yadav A, Shahi VK. Advances in membrane distillation for wastewater treatment: Innovations, challenges, and sustainable opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178749. [PMID: 40022985 DOI: 10.1016/j.scitotenv.2025.178749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 03/04/2025]
Abstract
Water pollution and the growing demand for zero liquid discharge solutions have driven the development of advanced wastewater treatment technologies. Membrane distillation (MD) is a promising thermal-based process capable of treating high-salinity brines and wastewater. This review provides an in-depth analysis of MD configurations, operating principles, and membrane characteristics while addressing key challenges such as fouling and pore wetting which hinder large-scale implementation. To overcome these limitations, various membrane fabrication and modification strategies, including physical and chemical approaches, have been explored. The integration of MD with other processes (hybrid MD) for wastewater treatment is also examined. A comprehensive discussion on the mechanisms of organic, inorganic, and biological fouling and their impact on MD performance is presented. Additionally, recent advancements in antifouling strategies, including surface modifications, novel materials, and operational optimizations, are reviewed. Furthermore, the review critically analyzes membrane wetting, its governing mechanisms, and mitigation techniques. By summarizing the current challenges and future prospects, this work provides valuable insights into improving MD performance for practical applications. The findings serve as a foundation for further research and technological advancements in the field of wastewater treatment using MD.
Collapse
Affiliation(s)
- Raj Vardhan Patel
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Anshul Yadav
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, India; Department of Water Resources Development and Management, Indian Institute of Technology Roorkee, 247667, India.
| | - Vinod Kumar Shahi
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, India; Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, 247667, India.
| |
Collapse
|
2
|
Abdelfattah I, El-Shamy AM. Review on the escalating imperative of zero liquid discharge (ZLD) technology for sustainable water management and environmental resilience. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119614. [PMID: 38043309 DOI: 10.1016/j.jenvman.2023.119614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/16/2023] [Accepted: 11/11/2023] [Indexed: 12/05/2023]
Abstract
This comprehensive review delves into the forefront of wastewater treatment technology, with a specific focus on the revolutionary concept of Zero Liquid Discharge (ZLD). (ZLD), underpinned by a sustainable ethos, aspires to accomplish total water reclamation, constituting a pivotal response to pressing environmental issues. The paper furnishes a historical panorama of (ZLD), elucidating its motivating factors and inherent merits. It navigates a spectrum of (ZLD) technologies encompassing thermal methodologies, (ZLD) synergized with Reverse Osmosis (RO), High-Efficiency Reverse Osmosis (HERO), Membrane Distillation (MD), Forward Osmosis (FO), and Electrodialysis Reversal (EDR). Moreover, the study casts a global purview over the deployment status of (ZLD) systems in pursuit of resource recovery, accentuating nations such as the United States, China, India, assorted European Union members, Canada, and Egypt. Meticulous case studies take center stage, underscoring intricate scenarios involving heavily contaminated effluents from challenging sectors including tanneries, textile mills, petroleum refineries, and paper mills. The report culminates by distilling sagacious observations and recommendations, emanating from a collaborative brainstorming endeavor. This compendium embarks on an enlightening journey through the evolution of wastewater treatment, (ZLD)'s ascendancy, and its transformative potential in recalibrating water management paradigms while harmonizing industrial progress with environmental stewardship.
Collapse
Affiliation(s)
- I Abdelfattah
- Water Pollution Research Department, National Research Centre, El-Bohouth St. 33, Dokki, P.O. 12622, Giza, Egypt Giza, Egypt.
| | - A M El-Shamy
- Physical Chemistry Department, Electrochemistry and Corrosion Lab., National Research Centre, El-Bohouth St. 33, Dokki, P.O. 12622, Giza, Egypt Giza, Egypt.
| |
Collapse
|
3
|
Panagopoulos A, Giannika V. Decarbonized and circular brine management/valorization for water & valuable resource recovery via minimal/zero liquid discharge (MLD/ZLD) strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116239. [PMID: 36174468 DOI: 10.1016/j.jenvman.2022.116239] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Brine (saline wastewater/water) from desalination, salt lakes, and industrial activities (e.g., pharmaceutical industries, oil & gas industries) has received a lot of attention around the world due to its adverse impact on the environment. Currently, several disposal methods have been applied; however, these methods are nowadays unsustainable. To tackle this problem, brine treatment and valorization is considered a promising strategy to eliminate brine discharge and recover valuable resources such as water, minerals, salts, metals, and energy. Brine valorization and resource recovery can be achieved via minimal and zero liquid discharge (MLD & ZLD) desalination systems. Commercially successful technologies such as reverse osmosis (RO) and distillation cannot be adopted as standalone technologies due to restrictions (e.g., osmotic pressure, high-energy/corrosion). Nonetheless, novel technologies such as forward osmosis (FO), membrane distillation (MD) can treat brine of high salinity and present high recovery rates. The extraction of several ions from brines is technically feasible. The minerals/salts composed of major ions (i.e., Na+, Cl-, Mg2+, Ca2+) can be useful in a variety of sectors, and their sale prices are reasonable. On the other hand, the extraction of scarce metals such as lithium, rubidium, and cesium can be extremely profitable as their sale prices are extremely higher compared to the sale prices of common salts. Nonetheless, the extraction of such precious metals is currently restricted to a laboratory scale. The MLD/ZLD systems have high energy consumption and thus are associated with high GHGs emissions as fossil fuels are commonly burned to produce the required energy. To make the MLD/ZLD systems more eco-friendly and carbon-neutral, the authors suggest integrating renewable energy sources such as solar energy, wind energy, geothermal energy, etc. Besides water, minerals, salts, metals, and energy can be harvested from brine. In particular, salinity gradient power can be generated. Salinity gradient power technologies have shown great potential in several bench-scale and pilot-scale implementations. Nonetheless, several improvements are required to promote their large-scale feasibility and viability. To establish a CO2-free and circular global economy, intensive research and development efforts should continue to be directed toward brine valorization and resource recovery using MLD/ZLD systems.
Collapse
Affiliation(s)
- Argyris Panagopoulos
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zografou, 15780, Athens, Greece.
| | - Vasiliki Giannika
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zografou, 15780, Athens, Greece.
| |
Collapse
|
4
|
Varun S, George NM, Chandran AM, Varghese LA, Mural PKS. Multifaceted PVDF nanofibers in energy, water and sensors: A contemporary review (2018 to 2022) and future perspective. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Evaluating the integration of nanofiltration membranes in advanced water reclamation schemes using synthetic solutions: From phosphorous removal to phosphorous circularity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Panagopoulos A. Techno-economic assessment of zero liquid discharge (ZLD) systems for sustainable treatment, minimization and valorization of seawater brine. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114488. [PMID: 35042172 DOI: 10.1016/j.jenvman.2022.114488] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
The challenge of brine disposal has sparked a lot of interest in advanced strategies for valorizing them through freshwater and salt recovery. This research article examines the technical and economic aspects of zero liquid discharge (ZLD) desalination systems using two different crystallization processes, namely brine crystallizer (BCr) in scenario 1 and wind-aided intensified evaporation (WAIV) in scenario 2 for sustainable treatment, minimization, and valorization of seawater brine. The results indicated that scenario 1 has a higher water recovery (99.14%) than scenario 2 (85.75%) as the crystallization process in scenario 2 (i.e., WAIV) does not recover freshwater; however, water is evaporated through WAIV technology and thus both systems have low brine volumes (<1 m3/day), achieving ZLD conditions. The total energy and cost demands of scenario 1 (22.15 kWh/m3 & US$100.5/day) are greater than those of scenario 2 (15.34 kWh/m3 & US$85.3/day). Both scenarios are viable, with profits ranging from US$180.49/day to US$225.85/day depending on whether only desalinated water or both desalinated water and solid salt are sold. The insight given in this techno-economic analysis will aid in the sustainable valorization and management of brine from several brine-generating industries.
Collapse
Affiliation(s)
- Argyris Panagopoulos
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou St, Zografou, 15780, Athens, Greece.
| |
Collapse
|
7
|
Cipolletta G, Lancioni N, Akyol Ç, Eusebi AL, Fatone F. Brine treatment technologies towards minimum/zero liquid discharge and resource recovery: State of the art and techno-economic assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113681. [PMID: 34521009 DOI: 10.1016/j.jenvman.2021.113681] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/11/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
In the framework of minimum liquid discharge (MLD) or zero liquid discharge (ZLD), sustainable brine management can be achieved via appropriate hybrid treatment technologies that provide water reuse, resource recovery, energy recovery and even freshwater production. This paper reviews the state of the art brine treatment technologies targeting MLD/ZLD and resource recovery and highlights their advantages and limitations. The right combination of treatment processes can add a high value to the brine management and shift the focus from removal to recovery and reuse point and help to adopt a more circular economy approach. ZLD technologies targets 100% water recovery using both membrane- and thermal-based technologies, while they are often hindered by high cost and intensive energy requirement. Meanwhile, the recovery of salts and other resources can partially compensate the operation cost of ZLD processes. MLD is a promising option that achieves up to 95% water recovery by using mainly membrane-based technologies. At this point, feasibility assessment is important to assess the environmental and economic sound of technologies. In the second part, we provide a techno-economic assessment of the most common technologies to provide possible benefits on a desalination plant. In the latter sections, innovative brine treatment schemes are discussed aiming MLD/ZLD, while resource recovery from brine and possible valorization routes of the recovered materials are highlighted to help to reduce the overall costs of the plants and to reach the targets of circular economy.
Collapse
Affiliation(s)
- Giulia Cipolletta
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Marche Polytechnic University, via Brecce Bianche 12, 60131, Ancona, Italy
| | - Nicola Lancioni
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Marche Polytechnic University, via Brecce Bianche 12, 60131, Ancona, Italy
| | - Çağrı Akyol
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Marche Polytechnic University, via Brecce Bianche 12, 60131, Ancona, Italy.
| | - Anna Laura Eusebi
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Marche Polytechnic University, via Brecce Bianche 12, 60131, Ancona, Italy.
| | - Francesco Fatone
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Marche Polytechnic University, via Brecce Bianche 12, 60131, Ancona, Italy
| |
Collapse
|
8
|
Abstract
Water serves as an indispensable part of human life and production. On account of the overexploitation of traditional water sources, the demand for wastewater recycling is expanding rapidly. As a promising water treatment process, membrane distillation (MD) has been utilized in various wastewater treatments, such as desalination brine, textile wastewater, radioactive wastewater, and oily wastewater. This review summarized the investigation work applying MD in wastewater treatment, and the performance was comprehensively introduced. Moreover, the obstructions of industrialization, such as membrane fouling, membrane wetting, and high energy consumption, were discussed with the practical investigation. To cope with these problems, various strategies have been adopted to enhance MD performance, including coupling membrane processes and developing membranes with specific surface characteristics. In addition, the significance of nutrient recovery and waste heat utilization was indicated.
Collapse
|