1
|
Jang YS, Zhang Y, Kirk MF, Kim J, Kim M, Lee N, Song H, Kwon MJ. Microbial Fe(III) reduction across a pH gradient: The impacts on secondary mineralization and microbial community development. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124841. [PMID: 40056578 DOI: 10.1016/j.jenvman.2025.124841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Fe(III) (hydr)oxides are prevalent in natural environments where they impact contaminant mobility, greenhouse gas release, and nutrient cycling. In anoxic conditions, dissimilatory iron reducing bacteria (DIRB) and other microbial groups primarily drive Fe(III) reduction. Dissimilatory iron reduction (DIR) results in the reductive dissolution of Fe(III) phases and subsequent secondary mineralization. These processes are highly sensitive to pH changes, since protons serve as reactants in DIR. However, there is limited understanding of how DIR impacts secondary mineralization and microbial community development under relevant pH gradients. This study investigated the impact of initial pH (6.3, 6.9, 7.3, 7.7, 9) and Fe(III) source (goethite, lepidocrocite) on DIR, using acetate as the electron donor. The rate and extent of Fe(III) reduction decreased with increasing pH and that lepidocrocite, with its relatively lower crystallinity compared to goethite, supported greater DIR activity. Solid phase analyses revealed predominant formation of siderite alongside lepidocrocite reduction in microcosms with initial pH at 6.3 and 6.9. Similarly, in microcosms with initial pH at 7.3 and 7.7, partial transformation to siderite occurred. In contrast, goethite-amended microcosms did not show clear mineralogical transformations, despite the observed Fe(II) production. Microbial community analysis using 16S rRNA sequencing indicated greater enrichment of DIRB at lower pH, with a decline in abundance as pH increased. Overall, pH influenced DIR more than Fe mineralogy, highlighting its critical role in DIR processes, secondary mineral formation, and DIRB community development. This study further provides insights for developing remediation strategies involving microbial Fe(III) reduction under varying pH conditions.
Collapse
Affiliation(s)
- Yun Seo Jang
- Department of Earth and Environmental Sciences, Korea University, Seoul, 02831, Republic of Korea
| | - Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Seoul, 02831, Republic of Korea
| | - Matthew F Kirk
- Department of Geology, Kansas State University, Manhattan, KS, 66506, USA
| | - Juhee Kim
- Department of Earth and Environmental Sciences, Korea University, Seoul, 02831, Republic of Korea
| | - Minkyoung Kim
- Department of Earth and Environmental Sciences, Korea University, Seoul, 02831, Republic of Korea
| | - Narae Lee
- Department of Earth and Environmental Sciences, Korea University, Seoul, 02831, Republic of Korea
| | - Hojun Song
- Department of Earth and Environmental Sciences, Korea University, Seoul, 02831, Republic of Korea
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul, 02831, Republic of Korea.
| |
Collapse
|
2
|
Min H, O'Loughlin EJ, Kwon MJ. Anaerobic microbial metabolism in soil columns affected by highly alkaline pH: Implication for biogeochemistry near construction and demolition waste disposal sites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122127. [PMID: 39128342 DOI: 10.1016/j.jenvman.2024.122127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/29/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Construction and demolition wastes (CDWs) have become a significant environmental concern due to urbanization. CDWs in landfill sites can generate high-pH leachate and various constituents (e.g., acetate and sulfate) following the dissolution of cement material, which may affect subsurface biogeochemical properties. However, the impact of CDW leachate on microbial reactions and community compositions in subsurface environments remains unclear. Therefore, we created columns composed of layers of concrete debris containing-soil (CDS) and underlying CDW-free soil, and fed them artificial groundwater with or without acetate and/or sulfate. In all columns, the initial pH 5.6 of the underlying soil layer rapidly increased to 10.8 (without acetate and sulfate), 10.1 (with sulfate), 10.1 (with acetate), and 8.3 (with acetate and sulfate) within 35 days. Alkaliphilic or alkaline-resistant microbes including Hydrogenophaga, Silanimonas, Algoriphagus, and/or Dethiobacter were dominant throughout the incubation in all columns, and their relative abundance was highest in the column without acetate and sulfate (50.7-86.6%). Fe(III) and sulfate reduction did not occur in the underlying soil layer without acetate. However, in the column with acetate alone, pH was decreased to 9.9 after day 85 and Fe(II) was produced with an increase in the relative abundance of Fe(III)-reducing bacteria up to 9.1%, followed by an increase in the methanogenic archaea Methanosarcina, suggestive of methanogenesis. In the column with both acetate and sulfate, Fe(III) and sulfate reduction occurred along with an increase in both Fe(III)- and sulfate-reducing bacteria (19.1 and 17.7%, respectively), while Methanosarcina appeared later. The results demonstrate that microbial Fe(III)- and sulfate-reduction and acetoclastic methanogenesis can occur even in soils with highly alkaline pH resulting from the dissolution of concrete debris.
Collapse
Affiliation(s)
- Haeun Min
- Department of Earth and Environmental Sciences, Korea University, Seoul, South Korea
| | | | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul, South Korea.
| |
Collapse
|
3
|
Park SY, Zhang Y, O'Loughlin EJ, Jo HY, Kwon JS, Kwon MJ. Temperature-dependent microbial reactions by indigenous microbes in bentonite under Fe(III)- and sulfate-reducing conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133318. [PMID: 38154187 DOI: 10.1016/j.jhazmat.2023.133318] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
Bentonite is a promising buffer material for constructing spent nuclear fuel (SNF) repositories. However, indigenous microbes in bentonite can be introduced to the repository and subsequent sealing of the repository develops anoxic conditions over time which may stimulate fermentation and anaerobic respiration, possibly affecting bentonite structure and SNF repository stability. Moreover, the microbial activity in the bentonite can be impacted by the heat generated from radionuclides decay. Therefore, to investigate the temperature effect on microbial activities in bentonite, we created microcosms with WRK bentonil (a commercial bentonite) using lactate as the electron donor, and sulfate and/or ferrihydrite (Fe(III)) as electron acceptors with incubation at 18 ℃ and 50 ℃. Indigenous WRK microbes reduced sulfate and Fe(III) at both temperatures but with different rates and extents. Lactate was metabolized to acetate at both temperatures, but only to propionate at 18 ℃ during early-stage microbial fermentation. More Fe(III)-reduction at 18 ℃ but more sulfate-reduction at 50 ℃ was observed. Thermophilic and/or metabolically flexible microbes were involved in both fermentation and Fe(III)/sulfate reduction. Our findings illustrate the necessity of considering the influence of temperature on microbial activities when employing bentonite as an engineered buffer material in construction of SNF repository barriers.
Collapse
Affiliation(s)
- Su-Young Park
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | | | - Ho Young Jo
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Jang-Soon Kwon
- Korea Atomic Energy Research Institute, Daejeon 34057, South Korea
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
4
|
Zhang Y, O'Loughlin EJ, Park SY, Kwon MJ. Effects of Fe(III) (hydr)oxide mineralogy on the development of microbial communities originating from soil, surface water, groundwater, and aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166993. [PMID: 37717756 DOI: 10.1016/j.scitotenv.2023.166993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Microbial Fe(III) reduction is a key component of the iron cycle in natural environments. However, the susceptibility of Fe(III) (hydr)oxides to microbial reduction varies depending on the mineral's crystallinity, and the type of Fe(III) (hydr)oxide in turn will affect the composition of the microbial community. We created microcosm reactors with microbial communities from four different sources (soil, surface water, groundwater, and aerosols), three Fe(III) (hydr)oxides (lepidocrocite, goethite, and hematite) as electron acceptors, and acetate as an electron donor to investigate the shaping effect of Fe(III) mineral type on the development of microbial communities. During a 10-month incubation, changes in microbial community composition, Fe(III) reduction, and acetate utilization were monitored. Overall, there was greater reduction of lepidocrocite than of goethite and hematite, and the development of microbial communities originating from the same source diverged when supplied with different Fe(III) (hydr)oxides. Furthermore, each Fe(III) mineral was associated with unique taxa that emerged from different sources. This study illustrates the taxonomic diversity of Fe(III)-reducing microbes from a broad range of natural environments.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Edward J O'Loughlin
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, United States
| | - Su-Young Park
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
5
|
Kang MJ, Kim HS, Zhang Y, Park K, Jo HY, Finneran KT, Kwon MJ. Potential natural attenuation of petroleum hydrocarbons in fuel contaminated soils: Focusing on anaerobic fuel biodegradation involving microbial Fe(III) reduction. CHEMOSPHERE 2023; 341:140134. [PMID: 37690548 DOI: 10.1016/j.chemosphere.2023.140134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Liquid fossil fuels, collectively known as total petroleum hydrocarbons (TPHs), are highly toxic and frequently leak into subsurface environments due to anthropogenic activities. As an in-situ biological remedial option for TPH contamination, aerobic TPH biodegradation is limited due to oxygen's low solubility in water, and because it is consumed quickly by aerobic bacteria. Thus, we investigated the potential of anaerobic TPH degradation by indigenous fermenting bacteria and Fe(III)-reducing bacteria. Twenty 6-10 m soil cores were collected from a closed military base subject to ongoing TPH contamination since the 1980s. Physicochemical and microbial properties were determined at 0.5-m intervals in each core. To assess the relationship between TPH degradation and microbial Fe(III) reduction, soil samples were grouped into high-TPH (>500 mg kg-1) and high-Fe(II) (>450 mg kg-1), high-TPH and low-Fe(II), low-TPH and high-Fe(II), and low-TPH and low-Fe(II) groups. Alpha diversity was significantly lower in high-TPH groups than in low-TPH groups, suggesting that high TPH concentrations exerted a strong selective pressure on bacterial communities. In the high-TPH and low-Fe(II) group, fermenting bacteria, including Microgenomatia and Chlamydiae, were more abundant, suggesting that TPH biodegradation occurred via fermentation. In the high-TPH and high-Fe(II) group, Fe(III)-reducing bacteria, including Geobacter and Zoogloea, were more abundant, suggesting that microbial Fe(III) reduction enhances TPH biodegradation. In contrast, the fermenting and/or Fe(III)-reducing bacteria were not statistically abundant in the low-TPH groups.
Collapse
Affiliation(s)
- Myeong-Jung Kang
- Department of Earth and Environmental Sciences, Korea University, Republic of Korea
| | - Han-Suk Kim
- Department of Earth and Environmental Sciences, Korea University, Republic of Korea
| | - Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Republic of Korea
| | - Kanghyun Park
- Department of Earth and Environmental Sciences, Korea University, Republic of Korea
| | - Ho Young Jo
- Department of Earth and Environmental Sciences, Korea University, Republic of Korea
| | - Kevin T Finneran
- Department of Environmental Engineering and Earth Sciences, Clemson University, United States
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Republic of Korea.
| |
Collapse
|
6
|
Park K, Kim CY, Kirk MF, Chae G, Kwon MJ. Effects of natural non-volcanic CO 2 leakage on soil microbial community composition and diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160754. [PMID: 36513229 DOI: 10.1016/j.scitotenv.2022.160754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Geological carbon capture and storage (CCS) can reduce anthropogenic CO2 emissions, but questions exist about impacts at the surface if CO2 leaks from deep storage reservoirs. To examine potential impacts on soils, previous studies have investigated the geochemistry and microbiology of volcanic soils hosting high fluxes of CO2 rich gas. This study builds on those previous investigations by considering impacts of CO2 leakage at a non-volcanic site, where deep geogenic CO2 leaks from a cracked well casing. At the site, we collected 26 soil cores adjacent to soil gas monitoring wells. Based on measured CO2 fluxes, the soil samples fall into two groups 1) high CO2 (flux = 304.6 ± 272.1 g m-2 d-1, conc. = 29.1 ± 34 %) and 2) low CO2 (flux = 15.8 ± 6.1 g m-2 d-1, conc. = 0.8 ± 0.9 %). Soil pH was significantly lower (p < 0.05) in high flux group samples (4.6 ± 0.3) than the low flux ones (5.3 ± 0.7). Beta diversity calculations using 16S rRNA gene sequences and redundancy analysis (RDA) revealed clear clustering of microbial communities relative to CO2 flux and significant correlations of community composition with pH and organic carbon content. In the high flux soils, abundant microbial groups included Acidobacteriota, Ktedonobacteria, and SC-I-84 in the phylum Proteobacteria, as well as Nitrososphaeria, a genus of ammonia oxidizing archaea. Compared to volcanic sites described previously, our non-volcanic site had slight differences in soil geochemical properties and gradual shifts in community compositions between CO2 hotspots and background locations. Moreover, the elevated abundance of SC-I-84 has not been reported in studies of volcanic sites. This study improves our ability to predict potential environmental impacts of geological CCS by expanding the range of conditions over which existing CO2 leakage has been observed.
Collapse
Affiliation(s)
- Kanghyun Park
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Chan Yeong Kim
- Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, South Korea; GeoGreen21, 55 Digital-ro 33-gil, Guro-gu, Seoul 08376, South Korea
| | - Matthew F Kirk
- Department of Geology, Kansas State University, Manhattan, KS 66506, USA
| | - Gitak Chae
- Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, South Korea.
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
7
|
Li W, Yang Y, Lin X, Yin W, Fang Z, Li P, Wu J. Effective immobilization of Cd(II) in soil by biotic zero-valent iron and coexisting sulfate. CHEMOSPHERE 2023; 310:136915. [PMID: 36270520 DOI: 10.1016/j.chemosphere.2022.136915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
In this work, zero-valent iron (ZVI) combined with anaerobic bacteria was used in the remediation of Cd(II)-polluted soil under the mediation of sulfate (SO42-). Owing to hydrogen-autotrophic sulfate reduction, serious corrosion occurred on sulfate-mediated biotic ZVI in terms of solid phase characterization as massive corrosive products (e.g., goethite, magnetite and green rust) were formed, which were crucial in the immobilization of Cd(II). Thus, this integrated system achieved a 4.9-fold increase in aqueous Cd(II) removal and converted more than 53% of easily available Cd(II)-fractions (acid-extractable and reducible) to stable forms (oxidizable and residual) based on the sequential extraction results as compared to the sulfate-mediated ZVI system. Increasing SO42- concentration and ZVI dosage both demonstrated positive correlation to Cd(II) immobilization, which further reflected that hydrogenotrophic desulfuration acted an essential role in improving Cd(II) immobilization. It indicated that hydrogenotrophic desulfuration could accelerate iron corrosion and promote reactive mineral formation through biomineralization, as well as generate cadmium sulfide precipitates (CdS) to achieve excellent immobilization performance for Cd(II). Besides, this reaction was favorable under neutral pH condition. Our results highlighted the promoted effect of hydrogen-autotrophic desulfuration on ZVI corrosion to immobilize Cd(II) and offered a practicable technique in Cd(II)-polluted soil remediation.
Collapse
Affiliation(s)
- Weiquan Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yuhang Yang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xueying Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Weizhao Yin
- School of Environment, Jinan University, Guangzhou, 510632, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Ping Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jinhua Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Choi BY, Park J, Ham B, Kirk MF, Kwon MJ. Effect of CO 2 on biogeochemical reactions and microbial community composition in bioreactors with deep groundwater and basalt. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150803. [PMID: 34626629 DOI: 10.1016/j.scitotenv.2021.150803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Changes in subsurface microbiology following CO2 injection have the potential to impact carbon trapping in CO2 storage reservoirs. However, much remains to be learned about responses of natural microbial consortia to elevated CO2 in basaltic systems. This study asks: how will microbes from deep (700 m) groundwater change along a gradient in CO2 (0-20 psi) in batch reactor systems containing basalt chips and groundwater amended with lactate? Reactors incubated for 87 days at 23 °C. Results for reactors with low CO2 (0 and 3 psi) differed considerably from those with high CO2 (10 and 20 psi). In reactors with low CO2, pH was >6.5 and lactate started to be used within 24 days. By 40 days, lactate was completely consumed and acetate increased to ~4 mM. As lactate was consumed, sulfate decreased from 0.16 to 0 mM after 40 days. In contrast, in reactors with high CO2, pH was <6.5, lactate and sulfate concentrations varied little and acetate was not produced. Biogeochemical modeling and community analyses indicate that differences between reactors with low and high CO2 reflect tolerances of reactor microbes to CO2 exposure. Communities in the low CO2 reactors carried out syntrophic lactate oxidation coupled with methanogenesis and sulfate reduction. Bacteroidota and Firmicutes became dominant phyla after 24 days and groups capable of sulfate reduction and methanogenesis were detected. In reactors with high CO2, however, biogeochemical activity was insignificant, no groups capable of sulfate reducion or methanogenesis were observed, and the community became less diverse during the incubation. These findings show that the response of microbial consortia can vary sharply along a CO2 gradient, creating significant differences in community composition and biogeochemistry, and that the timescale of basalt weathering is likely not rapid enough to prevent significant stress following a rapid increase in CO2 abundance.
Collapse
Affiliation(s)
- Byoung-Young Choi
- Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea.
| | - Jinyoung Park
- Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea
| | - Baknoon Ham
- Department of Earth and Environmental Sciences, Korea University, Seoul, South Korea
| | - Matthew F Kirk
- Department of Geology, Kansas State University, Manhattan, KS, United States
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul, South Korea.
| |
Collapse
|