1
|
Hu Y, Loh CY, Xie M, Chen G, Huang M, Qiao J. Ammonia recovery via direct contact membrane distillation: Modeling and performance optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121683. [PMID: 38963968 DOI: 10.1016/j.jenvman.2024.121683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Ammonia recovery from wastewater has positive environmental benefits, avoiding eutrophication and reducing production energy consumption, which is one of the most effective ways to manage nutrients in wastewater. Specifically, ammonia recovery by membrane distillation has been gradually adopted due to its excellent separation properties for volatile substances. However, the global optimization of direct contact membrane distillation (DCMD) operating parameters to maximize ammonia recovery efficiency (ARE) has not been attempted. In this work, three key operating factors affecting ammonia recovery, i.e., feed ammonia concentration, feed pH, and DCMD running time, were identified from eight factors, by a two-level Plackett-Burman Design (PBD). Subsequently, Box-Behnken design (BBD) under the response surface methodology (RSM) was used to model and optimize the significant operating parameters affecting the recovery of ammonia though DCMD identified by PBD and statistically verified by analysis of variance (ANOVA). Results showed that the model had a high coefficient of determination value (R2 = 0.99), and the interaction between NH4Cl concentration and feed pH had a significant effect on ARE. The optimal operating parameters of DCMD as follows: NH4Cl concentration of 0.46 g/L, feed pH of 10.6, DCMD running time of 11.3 h, and the maximum value of ARE was 98.46%. Under the optimized conditions, ARE reached up to 98.72%, which matched the predicted value and verified the validity and reliability of the model for the optimization of ammonia recovery by DCMD process.
Collapse
Affiliation(s)
- Yuan Hu
- Textile Pollution Controlling Engineering Centre of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ching Yoong Loh
- Department of Chemical Engineering, University of Bath, BA2 7AY, UK
| | - Ming Xie
- Department of Chemical Engineering, University of Bath, BA2 7AY, UK
| | - Gang Chen
- Textile Pollution Controlling Engineering Centre of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Manhong Huang
- Textile Pollution Controlling Engineering Centre of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jinli Qiao
- Textile Pollution Controlling Engineering Centre of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
2
|
Al Harby NF, Fetouh HA, El-Batouti M. Facile green synthesis route for new ecofriendly photo catalyst for degradation acid red 8 dye and nitrogen recovery. Sci Rep 2024; 14:1091. [PMID: 38212395 PMCID: PMC10784573 DOI: 10.1038/s41598-023-50930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/28/2023] [Indexed: 01/13/2024] Open
Abstract
This study novelty is that new photo catalyst prepared from sustainability low cost precursors. Dark red color hydrogel composites have been easily prepared from gelatin biopolymer using a simple sol-gel method. Gelatin doped by cobalt chloride, and silver nanoparticles (SNPs) in the presence of traces amount of sodium dodecyl sulfate surfactant and calcium chloride. Water-insoluble Gelatin composites are thermally stable photocatalysts for the degradation of toxic anionic acid red 8 dye. Promising photodynamic activity confirmed by fluorescence emission at λmax 650 nm. Optical absorption in Vis. light enhanced photo catalytic activity. Silver nanoparticles enhanced crystallinity, and improved optical properties and porosity. Dopants by CoCl2 and silver nanoparticles increased band gap of gelatin composites from (1.82 to 1.95) indicating interfacial charge separation. Low band gaps improved photo catalytic activity. Optical band gaps (Eg) lower than 2.0 eV indicates high catalytic activity in the photo degradation acid red 8 dye using Vis. light, wavelength 650 nm. Percent removal efficiency (%Re) of the dye at 500 ppm initial concentration, pH 1, contact time 30 min., and 0.20 g L-1 dose photo catalyst reached 95%. pH not affects removal efficiency. So, gelatin composites removed AR8 dye by photodegradation mechanism rather than adsorption due to photodynamic activity. Kinetics of photodegradation followed pseudo first order kinetic with rate constant k1 5.13 × 10-2 min.-1 Good electrical conductivity and magnetic properties (effective magnetic moment (µeff 4.11 B.M) improved dye degradation into simple inorganic species. Nutrients NH4+, and NO3- degradation products recovered by using alumina silicate clay via a cation exchange mechanism.
Collapse
Affiliation(s)
- Nouf F Al Harby
- Department of Chemistry, College of Science, Qassim University, 51452, Buraidah, Saudi Arabia.
| | - H A Fetouh
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21526, Egypt
| | - Mervette El-Batouti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21526, Egypt.
| |
Collapse
|
3
|
De la Lama-Calvente D, Fernández-Rodríguez MJ, García-Gómez JC, Borja R. Impact of natural degradation of the invasive alga Rugulopteryx okamurae on anaerobic digestion: Heavy metal pollution and kinetic performance. MARINE POLLUTION BULLETIN 2023; 192:115005. [PMID: 37167665 DOI: 10.1016/j.marpolbul.2023.115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
This study shows, for the first time, how the natural biodegradation of the Phaeophyceae Rugulopteryx okamurae (R.o.) affects its methane yield, by biochemical methane potential assays, and the methane production kinetics. Additionally, a mechanical (zeolite-assisted milling) and a thermal (120 °C, 45 min) pretreatments were assessed. The highest methane yield was obtained from the mechanically pretreated fresh ashore biomass (219 (15) NLCH4 kgVS-1), which presents the use of zeolite during milling as an economical alternative for heavy metal toxicity reduction. Moreover, no significant differences were observed between the other tests (with the exception of the lowest value obtained for the mechanically pretreated fresh R.o.). Low methane yields were linked to the heavy metal content. However, an increase of 28.5 % and 20.0 % in the k value was found for the untreated fresh R.o. biomass and fresh ashore biomass, respectively, when subjected to thermal pretreatment. Finally, an enhancement of 80.5 % in the maximum methane production rate was obtained for the fresh ashore biomass milled with zeolite compared to the untreated fresh ashore biomass.
Collapse
Affiliation(s)
- David De la Lama-Calvente
- Spanish Scientific Research Council (CSIC) - Instituto de la Grasa (IG), Department of Food Biotechnology, Campus Universidad Pablo de Olavide, Edificio 46. Ctra. de Utrera, km 1, 41013 Seville, Spain.
| | | | | | - Rafael Borja
- Spanish Scientific Research Council (CSIC) - Instituto de la Grasa (IG), Department of Food Biotechnology, Campus Universidad Pablo de Olavide, Edificio 46. Ctra. de Utrera, km 1, 41013 Seville, Spain
| |
Collapse
|
4
|
Cubero-Cardoso J, Maluf Braga AF, Trujillo-Reyes Á, Alonso-Segovia G, Serrano A, Borja R, Fermoso FG. Effect of metals on mesophilic anaerobic digestion of strawberry extrudate in batch mode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116783. [PMID: 36435128 DOI: 10.1016/j.jenvman.2022.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
According to recent studies, the anaerobic digestion of strawberry extrudate is a promising option with potential in the berry industry biorefinery. However, the lack and/or unbalance of concentrations of metals in some agro-industrial residues could hamper methane production during the anaerobic digestion of these kinds of wastes. In this study, a fractional factorial design was applied to screen the supplementation requirements regarding six metals (Co, Ni, Fe, Cu, Mn, and Zn) for methane production from strawberry extrudate (SE). The logistic model was used to fit the experimental data of methane production-time. It allowed identifying two different stages in the anaerobic process and obtaining the kinetic parameters for each step. Maximum methane production obtained in the first (Bmax) kinetic stage, the methane production in the second stage (P), and the maximum methane production rates (Rmax) concluded a statistically significant effect for Ni and Zn. The second set of experiments was carried out with Ni and Zn through a central composite design to study the concentration effect in the anaerobic digestion process of the strawberry extrudate. The parameters P and Rmax demonstrated a positive interaction between Ni and Zn. Although, Bmax did not prove a statistically significant effect between Ni and Zn.
Collapse
Affiliation(s)
- Juan Cubero-Cardoso
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, Km. 1, 41013 Seville, Spain.
| | - Adriana Ferreira Maluf Braga
- Biological Process Laboratory, São Carlos School of Engineering, University of São Paulo (LPB/EESC/USP), Av.João Dagnone 1100, São Carlos, São Paulo, 13563-120, Brazil.
| | - Ángeles Trujillo-Reyes
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, Km. 1, 41013 Seville, Spain.
| | - Gabriel Alonso-Segovia
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, Km. 1, 41013 Seville, Spain.
| | - Antonio Serrano
- Institute of Water Research, University of Granada, Granada, 18071, Spain; Department of Microbiology, Pharmacy Faculty, University of Granada, Campus de Cartuja S/n, Granada, 18071, Spain.
| | - Rafael Borja
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, Km. 1, 41013 Seville, Spain.
| | - Fernando G Fermoso
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, Km. 1, 41013 Seville, Spain.
| |
Collapse
|