1
|
Kalami S, Kalami S, Noorbakhsh R, Shirani M, Koohi MK. Development of nanoscale zero-valent iron embedded on polyaniline reinforced with sodium alginate hydrogel microbeads for effective adsorption of arsenic from apatite soil leachate water. Int J Biol Macromol 2025; 304:140841. [PMID: 39929459 DOI: 10.1016/j.ijbiomac.2025.140841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/15/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
A novel polymeric nanocomposite hydrogel adsorbent was developed to enhance the efficiency of arsenic removal from apatite soil leachate. Apatite soil aqueous leachate was treated with nanoscale zero-valent iron embedded on polyaniline reinforced with sodium alginate hydrogel beads. Various analytical techniques including attenuated total reflection -Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy were employed to characterize these chemically synthesized hydrogel beads. The influence of different types and ratios of adsorbent materials, solution pH, adsorbent dosage, contact time, temperature, initial arsenic concentration, and the presence of co-existing ions on the adsorption process were investigated. Under optimum operating conditions; a pH range of 4-6, 80 mg of sorbent, 180 min contact time led to a remarkable arsenic removal efficiency of approximately 90.33 %. Thermodynamic, adsorption isotherm, and kinetic models provided a good description of the observed experimental results. Compared to the Freundlich and Temkin models, the Langmuir model was found to be the best fit for the experimental data, with a maximum adsorption capacity of 104.167 mg/g. Physical adsorption is mainly responsible for controlling the adsorption of arsenic ions onto the hydrogel. Thermodynamic studies verified that the adsorption process was endothermic and spontaneous.
Collapse
Affiliation(s)
- Shaden Kalami
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shakila Kalami
- Department of Chemical Engineering and Petroleum, Chemistry & Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Roya Noorbakhsh
- Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), PO Box 31745-139, Karaj, Iran.
| | - Mahboube Shirani
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran.
| | - Mohammad Kazem Koohi
- Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| |
Collapse
|
2
|
Wang J, Li Y. Experimental and theoretical studies of spherical hydroxylamine hydrochloride intercalated molybdenum disulfide for the removal of U(VI), Eu(III), and Cr(VI). CHEMOSPHERE 2024; 367:143670. [PMID: 39491688 DOI: 10.1016/j.chemosphere.2024.143670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/20/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
The current environmental problem is the coexistence of multiple pollutants rather than a single pollutant. In this study, U(VI), Eu(III), and Cr(VI) are selected as representatives of the actinides, lanthanide elements, and heavy metal elements for removal study. The hydroxylamine hydrochloride intercalated molybdenum disulfide (HAH/MoS2) was prepared to remove these contaminants. The insertion of hydroxylamine hydrochloride increased layer spacing, which was conducive to the pollutant molecules entering the molybdenum disulfide layer. HAH/MoS2 revealed a spherical shape with a rough surface and relatively high anti-interference. The maximum adsorption capacities of HAH/MoS2 for U(VI), Eu(III), and Cr(VI) reached 104.9 mg/g, 72.9 mg/g, and 81.4 mg/g, respectively. The adsorption mechanism of U(VI) was interlayer adsorption at pH < 6.2 and surface complexation at pH > 6.2. Similarly, the removal of Eu(III) was interlayer adsorption at pH < 5.0, interlayer adsorption and surface complexation at pH 5.0-7.7, and forming precipitation Eu(OH)3(s) at pH > 7.7. The removal of Cr(VI) depended on surface complexation at pH < 4.0 and interlayer adsorption at pH > 4.0. These ions were more likely to be adsorbed between layers instead of at the surface. Compared to U(VI) and Cr(VI), Eu(III) was more easily adsorbed at the interlamination of HAH/MoS2. From the point of view of charge transfer, U(VI) and Eu(III) tended to give away electrons, and Cr(VI) tended to gain electrons in the removal process. This work can offer a new perspective for the design and application of two-dimensional materials for multiple pollutants removal.
Collapse
Affiliation(s)
- Jian Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Yan Li
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| |
Collapse
|
3
|
Liu D, Shehzad H, Zhou L, Farooqi ZH, Sharif A, Ahmed E, Ouyang J, Masrur DM, Abed K, Fatima M, Rehman S. Encapsulation of Bamboosa vulgaris culms derived activated biochar into hierarchical permeable, phosphate rich and functionalized alginate aerogel composites and its contribution in U(VI) adsorption. Int J Biol Macromol 2024; 280:135690. [PMID: 39284474 DOI: 10.1016/j.ijbiomac.2024.135690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024]
Abstract
In this study, a facile methodology was designed to encapsulate Bamboosa vulgaris culms derived activated biochar (BVC) in a variable mass ratio, into a three-dimensional hierarchical porous and permeable and amino-thiocarbamated alginate (TSC) to prepare hybrid biosorbents (BVC-MSA). These ultralight and lyophilized phosphate rich macroporous sorbents were rationally characterized through FTIR, XRD, BET, SEM-EDS, elemental mapping, XPS techniques and employed for efficient UO22+ adsorption from aqueous solutions. The phytic acid (PA) was found to be a suitable hydrophilic and phosphorylating agent for the TSC matrix through hydrogen-bonded crosslinking when employed in a correct mass ratio (1:3). The SEM-EDS and XPS analyses confirmed the UO22+ sorption onto BVC-MSA-3 (the most suitable composite with a BVC/TSC mass ratio of 30.0 % w/w) and provided evidence of heteroatom involvement in developing the physico-chemical interactions. The BCV-MSA-3 exhibited the best response as a sorbent during kinetics/sorption process, therefore, it was selected to study the equilibrium sorption studies. The BCV-MSA-3 removal efficiency increased from 12.1 to 94.2 % using 0.2 to 1.8 g/L sorbent dose at pH (4.5). The mentioned sorbent displayed a significant maximum sorption capacity qm (309.55 mg/g at 35 °C) calculated through the best-fitted Langmuir and Temkin models (R2 ≈ 0.99). The sorption kinetics followed the pseudo-second-order (PSORE) model and exhibited fast sorption rate teq (180 min). Thermodynamic parameters clarified that the sorption process is feasible ΔGo (-25.3 to -27.6 kJ/mol kJ/mol), endothermic ΔHo (27.17 kJ/mol), and proceeds with a positive entropy (0.176 kJ/mol.K). The study shows that BCV-MSA-3 could be an alternative and auspicious sorbent for uranium removal from aqueous solution.
Collapse
Affiliation(s)
- Dan Liu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology 418 Guanglan Road, 330013 Nanchang, China
| | - Hamza Shehzad
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology 418 Guanglan Road, 330013 Nanchang, China; School of Chemistry and Materials Science, East China University of Technology, China.
| | - Limin Zhou
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology 418 Guanglan Road, 330013 Nanchang, China.
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Ahsan Sharif
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ejaz Ahmed
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Jinbo Ouyang
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology 418 Guanglan Road, 330013 Nanchang, China
| | - Din Mohammad Masrur
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - KhalilUllah Abed
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Manahil Fatima
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Sadia Rehman
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| |
Collapse
|
4
|
Dhanasekaran A, Priyadarshini N, Perumal I, Suresh G, Sagadevan S. Hydroxyapatite derived from eggshell embedded on functionalized g-C 3N 4 for synergistic extraction of U(VI) from aqueous solution. CHEMOSPHERE 2024; 364:143018. [PMID: 39111674 DOI: 10.1016/j.chemosphere.2024.143018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/09/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
In this paper, we report hydroxyapatite derived from egg-shell biowaste embedded on diglycolamic acid functionalized graphitic carbon nitride nanocomposite (abbreviated as HAp@D-gCN). The compositional and morphological characteristics of HAp@D-gCN were evaluated using scanning electron microscope, X-ray diffraction, BET, FTIR techniques and surface charge using zeta potential measurement. The sorption of U(VI) species on HAp@D-gCN was investigated through batch studies as a function of pH, contact time, initial U(VI) concentration, adsorbent dosage and ionic strength. The adsorption of U(VI) onto HAp@D-gCN was confirmed by FTIR, XRD and EDS elemental mapping. Adsorption kinetics follow pseudo second order model and it attains equilibrium within 20 min. Adsorption isotherm data correlates well with Langmuir isotherm model with a maximum sorption capacity of 993.6 mg of U(VI) per gram of HAp@D-gCN at 298K. U(VI) can be leached from the loaded adsorbent using 0.01 M Na2CO3 as desorbing agent and its sorption capacity remains unaffected even after 4 adsorption-desorption cycles. Hence, the present study reveals that HAp@D-gCN nanocomposite could serve as an environmental friendly material with potential application in environmental remediation.
Collapse
Affiliation(s)
- A Dhanasekaran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai, 600127, Tamil Nadu, India
| | - N Priyadarshini
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - Ilaiyaraja Perumal
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai, 600127, Tamil Nadu, India.
| | - G Suresh
- Department of Physics, Aarupadai Veedu Institute of Technology, Vinayaka Mission's Research Foundation (DU), Chennai, 603104, Tamil Nadu, India
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, Universiti of Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| |
Collapse
|
5
|
Dhanasekaran A, Perumal I. Uranium adsorption efficiency of diglycolamic acid functionalized graphitic carbon nitride adsorbent: Kinetic, isotherm, and thermodynamic studies. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:280-294. [PMID: 39044350 DOI: 10.1080/10934529.2024.2380956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
This study proposes the use of diglycolamic acid-functionalized graphitic carbon nitride (HDGA-gCN) as an adsorbent for uranium removal. Our experiments showed that at pH 6.0, HDGA-gCN had a high adsorption capacity of 263.2 mg g-1 and achieved equilibrium in 30 min. The adsorption isotherm was well-fitted by the Langmuir model, and the adsorption kinetics followed a pseudo-second-order equation. U(VI) adsorption on HDGA-gCN is due to electrostatic interactions between the amine, diglycolamic acid, and uranium species. The thermodynamic parameters indicate that adsorption is spontaneous and exothermic. The loaded U(VI) can be desorbed using 0.1 M Na2CO3, and HDGA-gCN exhibited an exceptional adsorption percentage for U(VI) compared to other coexisting ions. HDGA-gCN had faster kinetics, adsorption capacity, and reusability, making it suitable for U(VI) remediation.
Collapse
Affiliation(s)
- A Dhanasekaran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India
| | - Ilaiyaraja Perumal
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India
| |
Collapse
|
6
|
Yang J, Nie J, Bian L, Zhang J, Song M, Wang F, Lv G, Zeng L, Gu X, Xie X, Zhang P, Song Q. Clay minerals/sodium alginate/polyethylene hydrogel adsorbents control the selective adsorption and reduction of uranium: Experimental optimization and Monte Carlo simulation study. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133725. [PMID: 38401209 DOI: 10.1016/j.jhazmat.2024.133725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/26/2024]
Abstract
Clay minerals formations are potential geological barrier (host rocks) for the long-rerm storage of uranium tailing in deep geological repositories. However, there are still obstacles to the efficient retardation of uranium because of the competition between negatively charged regions at the clay minerals end face, surface and between layers, as well as low mineralization capacity. Herein, employing a simple method, we used sodium alginate (SA), an inexpensive natural polymer material, polyethylene (PE), and the natural clay minerals montmorillonite (Mt), nontronite (Nt), and beidellite (Bd) to prepare three hydrogel adsorbents, (denoted as Mt/PE-@SA, Nt/PE-@SA, and Bd/PE-@SA), respectively. The application of obtained hydrogel adsorbents further extends to uranium(VI) removal from aqueous. Due to the synergistic action of SA group and PE group, hydrogel adsorbents showed select adsorption and mineralization effect on uranium(VI), among which the maximum uranium(VI) adsorption capacity of Nt/PE-@SA was 133.3 mg·g-1 and Mt/PE-@SA exhibited strong selectivity for uranium(VI) in the presence of coexisting metal ions. Cyclic voltammetry studies indicated the mitigation and immobilization of uranium species onto adsorbents by both reduction and mineralization. Besides, the synergistic adsorption of SA and PE on clay minerals was hypothesized, and the idea was supported by structure optimizations results from Monte Carlo dynamics simulation (MCD). Three obtained hydrogel adsorbents structural model was constructed based on its physicochemical characterization, the low energy adsorption sites and adsorption energies are investigated using MCD simulation. The simulation results show that obtained hydrogel adsorbents have a strong interaction with uranium(VI), which ensures the high adsorption capacity of those materials. Most importantly, this work demonstrates a new strategy for preparing mineral-based hydrogel adsorbents with enough stability and provides a new perspective for uranium(VI) removal in complex environment.
Collapse
Affiliation(s)
- Jingjie Yang
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Jianan Nie
- Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Liang Bian
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, Sichuan, China.
| | - Jingmei Zhang
- Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Mianxin Song
- Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Fei Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300000, China
| | - Guocheng Lv
- School of Materials Science and Engineering, China University of Geosciences, Beijing 100000, China
| | - Li Zeng
- Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Xiaobin Gu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou 51000, China
| | - Xin Xie
- Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Peng Zhang
- Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Qing Song
- Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| |
Collapse
|
7
|
Zhang Y, Huang S, Mei B, Jia L, Liao J, Zhu W. Construction of dopamine supported Mg(Ca)Al layered double hydroxides with enhanced adsorption properties for uranium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163525. [PMID: 37068682 DOI: 10.1016/j.scitotenv.2023.163525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
A novel dopamine-supported Mg(Ca)Al layered double hydroxide composite was synthesized by co-precipitation method. The existence of Ca2+ and dopamine could promote the capture of uranium on the layered double hydroxides. In batch experiments, the composite exhibited good uranium removal performance, including high adsorption capacity (687.3 mg/g), strong anti-interference and good reusability (the removal percentage was still higher than 90 % after five cycles). At low initial uranium concentration, the uranium removal percentage on the composite exceeded 99.7 % and the residual concentration of uranium in the solution was <0.03 mg/L, reaching the limited standard of the World Health Organization. The studies of adsorption kinetics and isotherm indicated that the uranium adsorption behavior on the composite conformed to the pseudo-second-order kinetic and Langmuir isotherm models, suggesting that the process was a monolayer adsorption dominated by chemical adsorption. Furthermore, the high-efficiency uranium adsorption on the Mg(Ca)Al layered double hydroxide was mainly attributed to the strong complexation between the active sites (-OH and -NH2) and uranium, the precipitation of interlayer intercalation ions (CO32- and OH-) to uranium and the ion exchange of Ca2+ to uranium. Due to these advantages, the dopamine-supported Mg(Ca)Al layered double hydroxide composite is expected to be used as fine adsorbent to remove uranium from wastewater.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Siqi Huang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Bingyu Mei
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lingyi Jia
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jun Liao
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
8
|
Zhang Y, Mei B, Shen B, Jia L, Liao J, Zhu W. Preparation of biochar@chitosan-polyethyleneimine for the efficient removal of uranium from water environment. Carbohydr Polym 2023; 312:120834. [PMID: 37059560 DOI: 10.1016/j.carbpol.2023.120834] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 03/28/2023]
Abstract
A novel chitosan-based composite with rich active sites was synthesized by uniformly dispersing biochar into the cross-linked network structure formed by chitosan and polyethyleneimine. Due to the synergistic effect of biochar (minerals) and chitosan-polyethyleneimine interpenetrating network (amino and hydroxyl), the chitosan-based composite possessed an excellent adsorption performance for uranium(VI). It could rapidly (<60 min) achieve a high adsorption efficiency (96.7 %) for uranium(VI) from water and a high static saturated adsorption capacity (633.4 mg/g), which was far superior to other chitosan-based adsorbents. Moreover, the separation for uranium(VI) on the chitosan-based composite was suitable for a variety of actual water environments and the adsorption efficiencies all exceeded 70 % in different water bodies. The soluble uranium(VI) could be completely removed by the chitosan-based composite in the continuous adsorption process, which could meet the permissible limits of the World Health Organization. In sum, the novel chitosan-based composite could overcome the bottleneck of current chitosan-based adsorption materials and become a potential adsorbent for the remediation of actual uranium(VI) contaminated wastewater.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Bingyu Mei
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Binhao Shen
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lingyi Jia
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jun Liao
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China..
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China..
| |
Collapse
|
9
|
Pereira WS, Kelecom A, Lopes JM, Charles-Pierre M, Campelo ELC, Carmo AS, Filho LGP, Paiva AKS, Silva AX. Application of radiological assessment as water quality criterion for effluent release in a Brazilian uranium mine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65379-65391. [PMID: 37084045 DOI: 10.1007/s11356-023-26964-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Uranium mining causes several radiological impacts on the surrounding environment, notably in the water bodies, mainly due to the release of long half-life radionuclides from the 238U and 232Th series. The Ore Treatment Unit, an old uranium mine undergoing decommissioning, has three points of liquid effluent release (#014, #025, and #076). For current study, 78 samples of water were collected at #014, 33 samples at #025, and 63 samples at #076. The radionuclides were analyzed by gross alpha count, gross beta count, and by arsenazo spectrophotometry. Analyses were carried out using the radiological water quality criterion established by World Health Organization and other organizations, together with the Brazilian legislation, to assess if the released effluents may be used unrestrictedly by the individuals of the public. At #014, the mean values of activity concentration (AC), in Bq·L-1, were as follows: Unat = 0.107, 226Ra = 0.035, 210Pb = 0.031, 232Th = 0.007, and 228Ra = 0.049. At #025 the mean values of AC, in Bq·L-1, were as follows: Unat = 0.086, 226Ra = 0.015, 210Pb = 0.028, 232Th = 0.006, and 228Ra = 0.032. Finally, at point #076, the mean AC values, in Bq·L-1, were as follows: Unat = 3.624, 226Ra = 0.074, 210Pb = 0.054, 232Th = 0.013, and 228Ra = 0.069. The current study showed that natural radionuclides were not in secular equilibrium. Despite uranium presented its values outside the limits of guidance levels, it can be state that the unrestricted use of effluents released in the three water bodies is authorized from the radiological point of view. In terms of dose rate, the releases at three points were within the radiological limits of potability. On the other hand, in an additional analysis, #76 presented chemical toxicity above the authorized value, pointing the need of restricted use of water from the point of view of chemical toxicity.
Collapse
Affiliation(s)
- Wagner S Pereira
- Indústrias Nucleares do Brasil S/A - INB, 27.555-000, Resende, RJ, Brasil.
- Programa de Engenharia Nuclear, Universidade Federal do Rio de Janeiro - UFRJ, 21.941-972, Rio de Janeiro, Brasil.
| | - Alphonse Kelecom
- Instituto de Biologia, Universidade Federal Fluminense - UFF, 24.001-970, Niterói, Brasil
| | - José M Lopes
- Departamento de Física da Terra e do Meio Ambiente, Instituto de Física, Universidade Federal da Bahia - UFBA, 40.170-115, Salvador, Brasil
- Programa de Pós-Graduação em Geoquímica (POSPETRO), Universidade Federal da Bahia - UFBA, 40.170-110, Salvador, Brasil
| | - Maxime Charles-Pierre
- Programa de Engenharia Nuclear, Universidade Federal do Rio de Janeiro - UFRJ, 21.941-972, Rio de Janeiro, Brasil
| | | | - Alessander S Carmo
- Setor de Criogenia, Centro Brasileiro de Pesquisas Físicas - CBPF, 22290-180, Rio de Janeiro, Brasil
| | - Lucas G Padilha Filho
- Departamento de Radiologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro - UFRJ, 21941-617, Rio de Janeiro, Brasil
- Fundação Técnico Educacional Souza Marques - FTESM, 21310-310, Rio de Janeiro, Brasil
| | - Alexandre K S Paiva
- Programa de Engenharia Nuclear, Universidade Federal do Rio de Janeiro - UFRJ, 21.941-972, Rio de Janeiro, Brasil
| | - Ademir X Silva
- Programa de Engenharia Nuclear, Universidade Federal do Rio de Janeiro - UFRJ, 21.941-972, Rio de Janeiro, Brasil
| |
Collapse
|
10
|
Sun Y, Leng R, Ma X, Zhang J, Han B, Zhao G, Ai Y, Hu B, Ji Z, Wang X. Economical amidoxime-functionalized non-porous β-cyclodextrin polymer for selective detection and extraction of uranium. CHEMICAL ENGINEERING JOURNAL 2023; 459:141687. [DOI: doi.org/10.1016/j.cej.2023.141687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
11
|
Qassim MI, Khalill MM, Hamed AA, Gizawy MA, Atta E, El-Hag Ali A. Synthesis and evaluation of a novel polycarbonate grafted poly (glycidyl methacrylate) resin for sorption of 131I. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Liu C, Li Y, Liu S, Zhou Y, Liu D, Fu C, Ye L, Fu Y. UO22+ capture using amidoxime grafting low-cost activated carbon (AO-AC) from solution: Adsorption kinetic, isotherms and interaction mechanism. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
In situ chemical oxidation-grafted amidoxime-based collagen fibers for rapid uranium extraction from radioactive wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
Amino-modified polyvinyl alcohol fibers for the efficient removal of uranium from actual uranium-containing laundry wastewater. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Liu C, Li Y, Liu S, Zhou Y, Liu D, Fu C, Ye L. Efficient extraction of UO22+ from seawater by polyethylenimine functionalized activated carbon (PEI-AC): adsorption performance and mechanism. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Su Y, Wenzel M, Paasch S, Seifert M, Doert T, Brunner E, Weigand JJ. One-pot synthesis of brewer's spent grain-supported superabsorbent polymer for highly efficient uranium adsorption from wastewater. ENVIRONMENTAL RESEARCH 2022; 212:113333. [PMID: 35483410 DOI: 10.1016/j.envres.2022.113333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
High-efficient and fast adsorption of uranium is important to reduce the hazards caused by the uranium contamination of water environment due to the increased human activities. Herein, brewer's spent grain (BSG)-supported superabsorbent polymers (SAP) with different cross-linking densities are prepared as cheap and eco-friendly adsorbents for the first time via one-pot swelling and graft polymerization. A 7 wt% NaOH solution is used to swell BSG before grafting and subsequently neutralize the acrylic acid to control the reaction rate without producing alkaline wastewater. Compared with the traditional methods, swelling improves the grafting density and the utilization of raw materials due to the increased disorder degree of the BSG fibers. This results in the grafting of abundant carboxyl and amide groups onto the BSG backbone, forming a strongly hydrophilic polymer network of the BSG-SAP. Compared with the reference polymers without BSG, BSG-SAP presents higher adsorption capacity and enhanced reusability. The highly cross-linked BSG-SAP (BSG-SAP-H) shows an outstanding adsorption capacity of U(VI) (1465 mg/g at pH0 = 4.6), a fast adsorption rate (81% of equilibrium adsorption capacity in 15 min), and a high selectivity in the presence of competing ions. Adsorption mechanism studies reveal the involvement of amide groups, a bidentate binding structure between UO22+ and the carboxyl groups, and a cation exchange between Na+ and UO22+. More importantly, the adsorption capacity of BSG-SAP-H reaches 254.4 mg/g in the fixed-bed column experiment at a low initial concentration (c0(U) = 30 mg/L) and keeps 80% of the adsorption capacity after four cycles, indicating a great potential for uranium removal from wastewater. This work shows a suitable approach to explore the untreated biomass to prepare SAP with enhanced adsorption performance via a general and low-cost strategy.
Collapse
Affiliation(s)
- Yi Su
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Marco Wenzel
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Silvia Paasch
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Markus Seifert
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Thomas Doert
- Chair of Inorganic Chemistry II, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Jan J Weigand
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.
| |
Collapse
|
17
|
Li L, Liu C, Zhang H, Huang B, Luo B, Bie C, Sun X. The enrichment of rare earth from magnesium salt leaching solution of ion-adsorbed type deposit: A waste-free process for removing impurities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114743. [PMID: 35217448 DOI: 10.1016/j.jenvman.2022.114743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Due to the complex composition of ion-adsorbed type rare earth ore leaching solution, there are challenges in the process of rare earth (RE) separation, such as large RE loss rate, low product purity, radioactive residue and so on. In this article, 8-hydroxyquinoline modified silica gel (HQ-SiO2) and 2,2'-(1,4-phenylenebis(oxy)) dioctanoic acid (PPBOA) were used to form an efficient process for impurities removal and RE enrichment. Solid phase extraction successfully intercepted 96.7% of the radioactive element thorium. The concentration of aluminium was reduced to 2.14 ppm by frank chromatography. Rare earth elements were enriched from 336.35 mg/L to 237.75 g/L by extraction-precipitation, that is, the enrichment multiple reached more than 700 and the proportion of RE was increased from 21.85% to 96.62%. The loss rate of RE was controlled below 1.59%. Moreover, the magnesium salt leaching solution could be recycled for the leaching of RE ores. Although some liquid waste need to be treated in the processes of HQ-SiO2 production and regeneration, the integrated process helps to decrease volatile organic solvent, acid-base consumption, wastewater and waste residue. It is an environment-friendly RE enrichment and impurity removal process, which shows application potential in the production field of ion-adsorbed type rare earth mineral products.
Collapse
Affiliation(s)
- Liqing Li
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Chenhao Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian, 361021, PR China
| | - Hepeng Zhang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian, 361021, PR China
| | - Bin Huang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian, 361021, PR China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, PR China; Ganzhou Rare Earth Group Co., Ltd., China Southern Rare Earth, Ganzhou, 341000, PR China
| | - Bing Luo
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian, 361021, PR China
| | - Chao Bie
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian, 361021, PR China
| | - Xiaoqi Sun
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian, 361021, PR China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, PR China.
| |
Collapse
|
18
|
Sakr AK, Al-Hamarneh IF, Gomaa H, Abdel Aal MM, Hanfi MY, Sayyed M, Khandaler MU, Cheira MF. Removal of uranium from nuclear effluent using regenerated bleaching earth steeped in β‒naphthol. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Verma S, Kim KH. Graphene-based materials for the adsorptive removal of uranium in aqueous solutions. ENVIRONMENT INTERNATIONAL 2022; 158:106944. [PMID: 34689036 DOI: 10.1016/j.envint.2021.106944] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/19/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Ground water contamination by radioactive elements has become a critical issue that can pose significant threats to human health. Adsorption is the most promising approach for the removal of radioactive elements owing to its simplicity, effectiveness, and easy operation. Among the plethora of functional adsorbents, graphene oxide and its derivatives are recognized for their excellent potential as adsorbent with the unique 2D structure, high surface area, and intercalated functional groups. To learn more about their practical applicability, the procedures involved in their preparation and functionalization are described with the microscopic removal mechanism by GO functionalities across varying solution pH. The performance of these adsorbents is assessed further in terms of the basic performance metrics such as partition coefficient. Overall, this article is expected to provide valuable insights into the current status of graphene-based adsorbents developed for uranium removal with a guidance for the future directions in this research field.
Collapse
Affiliation(s)
- Swati Verma
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Korea.
| |
Collapse
|
20
|
Lawtae P, Tangsathitkulchai C. The Use of High Surface Area Mesoporous-Activated Carbon from Longan Seed Biomass for Increasing Capacity and Kinetics of Methylene Blue Adsorption from Aqueous Solution. Molecules 2021; 26:6521. [PMID: 34770928 PMCID: PMC8587158 DOI: 10.3390/molecules26216521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/07/2022] Open
Abstract
Microporous- and mesoporous-activated carbons were produced from longan seed biomass through physical activation with CO2 under the same activation conditions of time and temperature. The specially prepared mesoporous carbon showed the maximum porous properties with the specific surface area of 1773 m2/g and mesopore volume of 0.474 cm3/g which accounts for 44.1% of the total pore volume. These activated carbons were utilized as porous adsorbents for the removal of methylene blue (MB) from an aqueous solution and their effectiveness was evaluated for both the adsorption kinetics and capacity. The adsorption kinetic data of MB were analyzed by the pseudo-first-order model, the pseudo-second-order model, and the pore-diffusion model equations. It was found that the adsorption kinetic behavior for all carbons tested was best described by the pseudo-second-order model. The effective pore diffusivity (De) derived from the pore-diffusion model had the values of 4.657 × 10-7-6.014 × 10-7 cm2/s and 4.668 × 10-7-19.920 × 10-7 cm2/s for the microporous- and mesoporous-activated carbons, respectively. Three well-known adsorption models, namely the Langmuir, Freundlich and Redlich-Peterson equations were tested with the experimental MB adsorption isotherms, and the results showed that the Redlich-Peterson model provided the overall best fitting of the isotherm data. In addition, the maximum capacity for MB adsorption of 1000 mg/g was achieved with the mesoporous carbon having the largest surface area and pore volume. The initial pH of MB solution had virtually no effect on the adsorption capacity and removal efficiency of the methylene blue dye. Increasing temperature over the range from 35 to 55 °C increased the adsorption of methylene blue, presumably caused by the increase in the diffusion rate of methylene blue to the adsorption sites that could promote the interaction frequency between the adsorbent surface and the adsorbate molecules. Overall, the high surface area mesoporous carbon was superior to the microporous carbon in view of the adsorption kinetics and capacity, when both carbons were used for the removal of MB from an aqueous solution.
Collapse
Affiliation(s)
| | - Chaiyot Tangsathitkulchai
- Institute of Engineering, School of Chemical Engineering, Suranaree University of Technology, Muang District, Nakhon Ratchasima 30000, Thailand;
| |
Collapse
|