1
|
Tao S, Zhu Y, Chen M, Shangguan W. Advances in Electrostatic Plasma Methods for Purification of Airborne Pathogenic Microbial Aerosols: Mechanism, Modeling and Application. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:596-617. [PMID: 39512392 PMCID: PMC11540111 DOI: 10.1021/envhealth.4c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 11/15/2024]
Abstract
The transmission of pathogenic airborne microorganisms significantly impacts public health and societal functioning. Ensuring healthy indoor air quality in public spaces is critical. Among various air purification technologies, electrostatic precipitation and atmospheric pressure nonthermal plasma are notable for their broad-spectrum effectiveness, high efficiency, cost-effectiveness, and safety. This review investigates the primary mechanisms by which these electrostatic methods collect and disinfect pathogenic aerosols. It also delves into recent advancements in enhancing their physical and chemical mechanisms for improve efficiency. Simultaneously, a thorough summary of mathematical models related to the migration and deactivation of pathogenic aerosols in electrostatic purifiers is provided. It will help us to understand the behavior of aerosols in purification systems. Additionally, the review discusses the current research on creating a comprehensive health protection system and addresses the challenges of balancing byproduct control with efficiency. The aim is to establish a foundation for future research and development in electrostatic aerosol purification and develop integrated air purification technologies that are both efficient and safe.
Collapse
Affiliation(s)
- Shanlong Tao
- Research
Center for Combustion and Environmental Technology, School of Mechanical
Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yong Zhu
- School
of Mechanical and Power Engineering, East
China University of Science and Technology, Shanghai 200237, PR China
| | - Mingxia Chen
- Research
Center for Combustion and Environmental Technology, School of Mechanical
Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wenfeng Shangguan
- Research
Center for Combustion and Environmental Technology, School of Mechanical
Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
2
|
Liu X, Liu J, Chen J, Zhong F. Investigation on removal of multi-component volatile organic compounds in a two-stage plasma catalytic oxidation system - Comparison of X (X=Cu, Fe, Ce and La) doped Mn 2O 3 catalysts. CHEMOSPHERE 2023; 329:138557. [PMID: 37037354 DOI: 10.1016/j.chemosphere.2023.138557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Mn2O3-X catalysts (X = Cu, Fe, Ce and La) were prepared based on γ-Al2O3 for the mixture degradation of muti-component volatile organic compounds (VOCs) composed of toluene, acetone, and ethyl acetate. The catalysts were characterized, and the density functional theory (DFT) simulation of ozone adsorption on Mn2O3-X were carried out to investigate the influence of adsorption energy on catalytic performance. The results showed that the removal efficiency (RE) of each VOC component was similarly improved by Mn2O3-X catalysts, and the greatest increase in VOCs' removal efficiency was obtained (7.8% for toluene, 86.2% for acetone, and 82.5% for ethyl acetate) at a special input energy (SIE) of 700 J L-1 with Mn2O3-La catalyst. Characterization results demonstrated that Mn2O3-La catalyst had the highest content of low valence Mn elements and the greatest Oads/Olatt ratio, as well as the lowest reduction temperature. Mn2O3-La catalyst also presented superior catalytic effect in improving carbon balance (CB) and CO2 selectivity ( [Formula: see text] ). The CB and [Formula: see text] were increased by 47.7% and 12.61% respectively with Mn2O3-La at a SIE of 400 J L-1 compared with that when only γ-Al2O3 was applied. The DFT simulation results of ozone adsorption on Mn2O3-X catalysts indicated that the adsorption energy of catalyst crystal was related to the catalytic performance of the catalyst. The Mn2O3-La/γ-Al2O3 catalyst, which had the highest absolute value of adsorption energy, presented the best performance in improving VOCs' RE.
Collapse
Affiliation(s)
- Xin Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China; School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Jianqi Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Jiayao Chen
- College of Science, Donghua University, Shanghai, 201620, People's Republic of China
| | - Fangchuan Zhong
- College of Science, Donghua University, Shanghai, 201620, People's Republic of China; Member of Magnetic Confinement Fusion Research Centre, Ministry of Education of the People's Republic of China, People's Republic of China.
| |
Collapse
|
3
|
Assadi AA, Baaloudj O, Khezami L, Ben Hamadi N, Mouni L, Assadi AA, Ghorbal A. An Overview of Recent Developments in Improving the Photocatalytic Activity of TiO 2-Based Materials for the Treatment of Indoor Air and Bacterial Inactivation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2246. [PMID: 36984127 PMCID: PMC10056653 DOI: 10.3390/ma16062246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Indoor air quality has become a significant public health concern. The low cost and high efficiency of photocatalytic technology make it a natural choice for achieving deep air purification. Photocatalysis procedures have been widely investigated for environmental remediation, particularly for air treatment. Several semiconductors, such as TiO2, have been used for photocatalytic purposes as catalysts, and they have earned a lot of interest in the last few years owing to their outstanding features. In this context, this review has collected and discussed recent studies on advances in improving the photocatalytic activity of TiO2-based materials for indoor air treatment and bacterial inactivation. In addition, it has elucidated the properties of some widely used TiO2-based catalysts and their advantages in the photocatalytic process as well as improved photocatalytic activity using doping and heterojunction techniques. Current publications about various combined catalysts have been summarized and reviewed to emphasize the significance of combining catalysts to increase air treatment efficiency. Besides, this paper summarized works that used these catalysts to remove volatile organic compounds (VOCs) and microorganisms. Moreover, the reaction mechanism has been described and summarized based on literature to comprehend further pollutant elimination and microorganism inactivation using photocatalysis. This review concludes with a general opinion and an outlook on potential future research topics, including viral disinfection and other hazardous gases.
Collapse
Affiliation(s)
- Achraf Amir Assadi
- Center for Research on Microelectronics and Nanotechnology, CRMN Sousse Techno Park, Sahloul BP 334, Sousse 4054, Tunisia
- Research Unit Advanced Materials, Applied Mechanics, Innovative Processes and Environment, Higher Institute of Applied Sciences and Technology of Gabes (ISSAT), University of Gabes, Gabes 6029, Tunisia
| | - Oussama Baaloudj
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering, Université des Sciences et de la Technologie Houari Boumediene, BP 32, Algiers 16111, Algeria
- Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351, Boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada
| | - Lotfi Khezami
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Naoufel Ben Hamadi
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Lotfi Mouni
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité, Faculté SNVST, Université Bouira, Bouira 10000, Algeria
| | - Aymen Amine Assadi
- École Nationale Supérieure de Chimie de Rennes (ENSCR), Université de Rennes, UMR CNRS 6226, 11 Allée de Beaulieu, 35700 Rennes, France
| | - Achraf Ghorbal
- Research Unit Advanced Materials, Applied Mechanics, Innovative Processes and Environment, Higher Institute of Applied Sciences and Technology of Gabes (ISSAT), University of Gabes, Gabes 6029, Tunisia
| |
Collapse
|
4
|
Guesmi A, Cherif MM, Baaloudj O, Kenfoud H, Badawi AK, Elfalleh W, Hamadi NB, Khezami L, Assadi AA. Disinfection of corona and myriad viruses in water by non-thermal plasma: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55321-55335. [PMID: 35661305 PMCID: PMC9165927 DOI: 10.1007/s11356-022-21160-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/24/2022] [Indexed: 05/06/2023]
Abstract
Nowadays, in parallel to the appearance of the COVID-19 virus, the risk of viruses in water increases leading to the necessity of developing novel disinfection methods. This review focuses on the route of virus contamination in water and introduces non-thermal plasma technology as a promising method for the inactivation of viruses. Effects of essential parameters affecting the non-thermal discharge for viral inactivation have been exposed. The review has also illustrated a critical discussion of this technology with other advanced oxidation processes. Additionally, the inactivation mechanisms have also been detailed based on reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- Ahlem Guesmi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh, 11432, Saudi Arabia
| | - Mohamed Majdi Cherif
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, 6072, Gabes, Tunisia
| | - Oussama Baaloudj
- Laboratory of Reaction Engineering, USTHB, BP 32, 16111, Algiers, Algeria
| | - Hamza Kenfoud
- Laboratory of Reaction Engineering, USTHB, BP 32, 16111, Algiers, Algeria
| | - Ahmad K Badawi
- Civil Engineering Department, El-Madina Higher Institute for Engineering and Technology, Giza, 12588, Egypt
| | - Walid Elfalleh
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, 6072, Gabes, Tunisia
| | - Naoufel Ben Hamadi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh, 11432, Saudi Arabia
| | - Lotfi Khezami
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh, 11432, Saudi Arabia.
| | | |
Collapse
|
5
|
Chen J, Liu J, Liu X, Gao W, Zhang J, Zhong F. Degradation of toluene in surface dielectric barrier discharge (SDBD) reactor with mesh electrode: Synergistic effect of UV and TiO 2 deposited on electrode. CHEMOSPHERE 2022; 288:132664. [PMID: 34710455 DOI: 10.1016/j.chemosphere.2021.132664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Combing with photo-catalysis and photo-catalyst, a surface dielectric barrier discharge (SDBD) reactor with a mesh electrode was applied for toluene degradation and a high mineralization was achieved. The degradation performance comparison between SDBD reactors with a mesh and a spring electrode was carried out as well. A significant improvement in carbon balance and CO2 selectivity were obtained in mesh SBDB reactor compared with that of spring's one. For instance, when only plasma was applied, the carbon balance and CO2 selectivity of mesh SDBD reactor were 84% and 42.6%, while only 64.5% and 31.8% in spring one, the carbon balance and CO2 selectivity were improved by 30.3% and 34% at SIE of 300 J L-1, respectively. Synergistic effects of photo-catalysis and photo-catalyst were conducted with a 254 nm UV lamp and TiO2 deposited on the mesh electrode by atmospheric pressure (AP) plasma technology. The results showed that TiO2 and UV irradiation both presented promoting effect on toluene degradation in SDBD reactor with mesh electrode. According to the experimental results, the carbon balance rose to 89.5% and 93.9% at SIE of 300 J L-1, when UV or TiO2 was applied. With the application of TiO2 and UV together, a highest carbon balance of 95.9% was obtained at the same SIE. At the same SIE, the CO2 selectivity was promoted by 42.8% or 55.3% with the application of UV or TiO2, and the promotion finally reached at 59.1% when TiO2 and UV were applied together. Additionally, the degradation efficiency of toluene was also enhanced with the introduction of TiO2 and UV irradiation. Increases in toluene degradation efficiency of 19. 7% and 26.8% were obtained at SIE of 300 J L-1, respectively. When both TiO2 and UV were applied, the enhancement could rise to 41.6%.
Collapse
Affiliation(s)
- Jiayao Chen
- College of Science, Donghua University Shanghai, 201620, PR China
| | - Jianqi Liu
- College of Environmental Science and Engineering, Donghua University Shanghai, 201620, PR China
| | - Xin Liu
- College of Environmental Science and Engineering, Donghua University Shanghai, 201620, PR China
| | - Wenye Gao
- College of Science, Donghua University Shanghai, 201620, PR China
| | - Jing Zhang
- College of Science, Donghua University Shanghai, 201620, PR China; Member of Magnetic Confinement Fusion Research Centre Ministry of Education, PR China
| | - Fangchuan Zhong
- College of Science, Donghua University Shanghai, 201620, PR China; Member of Magnetic Confinement Fusion Research Centre Ministry of Education, PR China.
| |
Collapse
|