1
|
Castro-Riquelme CL, López-Maldonado EA, Ochoa-Terán A, Pina-Luis G, Nthunya Lebea N. Enhanced detection of pesticides: evaluating monocarbamoylcarboxylic acids modified with amines for glyphosate and dicamba sensitivity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 340:126315. [PMID: 40319531 DOI: 10.1016/j.saa.2025.126315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/14/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
In this work a series of monocarbamoylcarboxylic acids (MCCAs) N-functionalized with different amines were evaluated to detect the pesticides glyphosate (Gly) and dicamba (Dic). The MCCAs have molar absorptivity coefficients (ε) three orders of magnitude higher than pesticides facilitating the measurements under UV-Vis spectroscopy. These compounds have the isolectric point (IEP) in the range of pH 3.04-4.82 and beyond are negative charged. The absorption properties of the compounds are pH-dependent due to the protonation and deprotonation of their molecules, the adsorption band shifts to a longer wavelength as the pH increases and in some ligands a hyperchromic effect is observed. The titration of MCCAs with a pesticide generates a change in the adsorption band and the sensitivity of the response is also pH-dependent. The sensitivity of MCCAs towards pesticides decreased at pH 5.0 and increased at pH 7.0 and 9.0 which is clearly influenced by the acid-base equilibriums in water. The response was more sensitive towards dicamba than with glyphosate, exhibiting linear concentration intervals up to 100 µM with 1a at pH 4 and 85 µM in compounds 2b and 2c at pH 7.0. The 1H NMR analysis in DMSO‑d6 of compounds 2a and 2c in presence of glyphosate and dicamba showed changes in the hydrogen signals indicating the interaction of these MCCAs with the pesticides in specific sites of their molecules. These MCCAs, proved to be promising molecular platforms for the optical detection of glyphosate and dicamba due to their pH-adjustable sensitivity and their ability to show significant electrostatic interactions, enabling pesticide detection over a wide concentration range.
Collapse
Affiliation(s)
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, Baja California, Tijuana 22424, Mexico.
| | - Adrián Ochoa-Terán
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/IT de Tijuana, Tijuana 22500 BC, Mexico.
| | - Georgina Pina-Luis
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/IT de Tijuana, Tijuana 22500 BC, Mexico
| | - N Nthunya Lebea
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersr, Private Bag X3, Johannesburg 2050, South Africa
| |
Collapse
|
2
|
Askarniya Z, Cichocki Ł, Makowiec S, Wang C, Boczkaj G. Degradation of dicamba - A persistent herbicide - By combined application of formic acid and UV as an advanced reduction process. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:137984. [PMID: 40179786 DOI: 10.1016/j.jhazmat.2025.137984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 04/05/2025]
Abstract
The degradation of dicamba as a persistent herbicide was studied with the combined application of UV and formic acid (FA) as a novel advanced reduction process (ARP). The effects of key parameters of FA concentration, dissolved organic matter, and inorganic anions were studied. A 97 % degradation and 94 % dechlorination of dicamba were obtained through the combination of UV and FA (UV-FA) at a dicamba concentration of 0.023 mM and FA concentration of 0.123 M. With respect to the dechlorination, at a dicamba concentration of 0.23 mM, FA concentration of 0.123 M, and pH of 2, chloride concentration of 12.4 mg/L and 5.2 mg/L was obtained for ARP (UV-FA) and sole UV in acidic condition, respectively. Scavenging test using Methyl viologen (MV2 +) as a scavenger for reductive radicals including carboxyl anion radicals (CO2•¯) led to a decrease in the chloride concentration to 1.7 mg/L, revealing the importance of this radical in the dechlorination of dicamba. Inorganic anions (CO32¯ and SO42¯) had a slightly positive effect on the degradation of dicamba and led to an increase in degradation to 99 %, while they had a negative effect on the dechlorination by 7 % and 30 %, respectively. Due to the turbidity induced by dissolved organic matters (DOM), a moderate decrease in degradation by 39 % and dechlorination by 30 % was observed. The existence of five intermediates identified by GC-MS technique confirmed the proposed mechanism of dicamba degradation via ARP. Reductive degradation of dicamba mainly consists of processes based on CO2•¯, including single electron transfer process and radical-nucleophilic aromatic substitution (SRN) reactions, demonstrating the capability of this ARP for the effective degradation of dicamba.
Collapse
Affiliation(s)
- Zahra Askarniya
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, Gdansk 80 - 233, Poland
| | - Łukasz Cichocki
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, Gdansk 80 - 233, Poland
| | - Sławomir Makowiec
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, G. Narutowicza St. 11/12, Gdansk 80 - 233, Poland
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, Gdansk 80 - 233, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
Xie G, Zhu C, Li C, Fan Z, Wang B. Predicting the adsorption of ammonia nitrogen by biochar in water bodies using machine learning strategies: Model optimization and analysis of key characteristic variables. ENVIRONMENTAL RESEARCH 2025; 267:120618. [PMID: 39681178 DOI: 10.1016/j.envres.2024.120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Biochar adsorption technology has been widely used to remove ammonia nitrogen from water bodies. However, existing methods for predicting adsorption efficiency often lack sufficient accuracy and practical usability. This study evaluated eight machine learning models, including XGB, LR, KNN, DT, RF, GBR, SVR, and ANN, to predict the adsorption efficiency of ammonia nitrogen. The evaluation utilized a dataset comprising 770 instances of ammonia nitrogen adsorption by biochar. The models' prediction performances were systematically compared, and cross-validation was applied to enhance their generalization ability, leading to the selection of the best-performing model. The selected model's parameters were further optimized using Bayesian optimization to improve the prediction accuracy. The Bayesian-optimized XGB model achieved the highest predictive performance, with a coefficient of determination (R2) of 0.978. The R2 values of the other models ranged from 0.556 (LR) to 0.927 (RF). Key factors influencing ammonia nitrogen adsorption efficiency were identified using SHAP analysis. These factors included biochar dosage, adsorption time, initial ammonia nitrogen concentration, solution pH, pyrolysis time, and O%. Their optimal ranges were further determined through partial dependency plots. This study developed a reliable machine learning tool for accurately predicting ammonia nitrogen adsorption efficiency. Additionally, it provided insights into optimizing the preparation processes and adsorption conditions of biochar, contributing to its practical application in treating ammonia nitrogen pollution in water bodies.
Collapse
Affiliation(s)
- Guixian Xie
- School of Environmental and Safety Engineering, LiaoNing Petrochemical University, Fushun, 113001, China
| | - Chi Zhu
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing, 210019, China
| | - Chen Li
- School of Environmental and Safety Engineering, LiaoNing Petrochemical University, Fushun, 113001, China
| | - Zhiping Fan
- School of Environmental and Safety Engineering, LiaoNing Petrochemical University, Fushun, 113001, China
| | - Bo Wang
- School of Environmental and Safety Engineering, LiaoNing Petrochemical University, Fushun, 113001, China.
| |
Collapse
|
4
|
Kumar R, Lamba J, Adhikari S, Kasera N, Torbert HA. Influence of iron-modified biochar on phosphate transport and deposition in saturated porous media under varying pH, ionic strength, and biochar dosage. CHEMOSPHERE 2025; 370:143932. [PMID: 39667531 DOI: 10.1016/j.chemosphere.2024.143932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Phosphorus (P) is one of the essential nutrients required for plants; however, loss of phosphorus from agricultural areas results in water quality impairment. This research aims to investigate the transport and deposition of phosphate at different solution chemistries and phosphate-biochar dosages under (a) individual phosphate flow, (b) phosphate transport followed by biochar, and (c) co-transport of biochar-phosphate in saturated porous media. Breakthrough curves (BTCs) for phosphate were generated to understand the effect of pine raw biochar (BC) and iron-modified biochar (Fe-BC) on phosphate transport and deposition under varying solutions, pH (5.5 ± 0.1-10.5 ± 0.1), ionic strength (0-10 mM), phosphate (10-20 mg/L), and biochar dosages (100-200 mg/L) in saturated porous media. Results revealed increased deposition of BC and Fe-BC at high ionic strength (IS), i.e., 10 mM compared to 0 mM. The BTCs of phosphate (10-20 mg/L) transport at increasing IS showed delayed elute and long tailing curves compared to BTCs of tracer. Further, phosphate transport using BTCs in biochar-mediated saturated porous media was investigated at 10-20 mg/L phosphate, where maximum retardation (37%) was observed at pH 6.7 ± 0.1 and 0 mM IS due to the availability of active sites for 10 mg/L phosphate using Fe-BC than BC. The BTCs of phosphate transport at pH 6.7 ± 0.1 and 0-10 mM IS showed 37% and 40% phosphate deposition in Fe-BC-mediated columns for 0 mM and 10 mM, respectively, than BC-mediated columns. For BC, maximum phosphate adsorption was observed at pH 5.5 ± 0.1, whereas for Fe-BC, it was observed at pH 6.7 ± 0.1 at 10 mM IS. The least adsorption was observed at pH of 10.5 ± 0.1 for both BC and Fe-BC. Similar phosphate retardation BTCs for BC and Fe-BC at 10 mM were observed with adsorption of 40% phosphate for 100-200 mg/L biochar dosages. Besides, co-transport and deposition of biochar and phosphate, considering with and without ripening effect, reported high phosphate retardation using Fe-BC than BC at pH of 6.7 ± 0.1 and 10 mM IS due to chemical non-equilibrium and mass transfer. Taken together, iron-modified biochar (Fe-BC) showed significant adsorptive potential for phosphate management in saturated porous media. Overall, modeling of transport and deposition of phosphate and biochar are significant to understanding fate, nutrient mobility & management, biochar-phosphate interactions, and remediation designs in saturated porous media.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Jasmeet Lamba
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Sushil Adhikari
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Nitesh Kasera
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Henry Allen Torbert
- United States Department of Agriculture-Agricultural Research Service, National Soil Dynamics Laboratory, Auburn, AL, 36832, USA
| |
Collapse
|
5
|
Liang Z, Wu J, He DC, Li Y, Liang YQ, Hu JW, Zou MY, Ning JF, Liu WR. Degradation characteristics and effect mechanisms of estrogens during aerobic composting of chicken manure based on the orthogonal test. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122751. [PMID: 39378806 DOI: 10.1016/j.jenvman.2024.122751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Environmental estrogens are currently a significant research topic, and poultry manure serves as a crucial source. This study investigated the degradation characteristics and effect mechanisms of six estrogens (E1, 17α-E2, 17β-E2, E3, 17α-EE2, and DES) during the aerobic composting of chicken manure. An orthogonal test comprising four factors (aeration rate, calcium-magnesium-phosphorus fertilizer (Ca-Mg-P fertilizer), coconut shell biochar, initial moisture content) and three levels of aerobic composting was conducted over a 45-day period to monitor the changes in estrogens and basic parameters. The results indicated that the factors influencing the estrogen degradation rate ranked as: initial moisture content (MC) > Ca-Mg-P fertilizer > aeration rate > coconut shell biochar. These factors significantly influenced the abundance of estrogen-degrading genera. Optimal composting conditions for estrogen degradation were identified as the addition of 10% coconut shell biochar, maintaining an initial moisture content of 60%, and using an aeration rate of 0.08 L min-1∙kg-1DM (dry matter), with an average degradation rate of 86.88% for the six estrogens under these conditions. During the composting process under various treatments, five known estrogen-degrading genera were observed with high relative abundance (max 31.08%), and the predominant genera were Staphylococcus and Brachybacterium for 17α-E2, 17β-E2, E3, 17α-EE2, and DES, and Pusillimonas for E1. The composition of microbial community structure changed significantly, and the dominated environment factors effecting the composition and succession of these genera were carbon to nitrogen ratio (C/N) and MC. The research results can provide both a theoretical basis and practical reference for the effective degradation of estrogens during the composting of chicken manure.
Collapse
Affiliation(s)
- Ziwei Liang
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou, 510655, China; Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Zhongkai University of Agriculture and Engineering, Guangzhou, 510550, China
| | - Junhao Wu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - De-Chun He
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou, 510655, China
| | - Yan Li
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou, 510655, China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jia-Wu Hu
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou, 510655, China
| | - Meng-Yao Zou
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510550, China
| | - Jian-Feng Ning
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wang-Rong Liu
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou, 510655, China.
| |
Collapse
|
6
|
Niu S, Li C, Gao S, Tian J, Zhang C, Li L, Huang Y, Lyu H. Biochar, microbes, and biochar-microbe synergistic treatment of chlorinated hydrocarbons in groundwater: a review. Front Microbiol 2024; 15:1443682. [PMID: 39091302 PMCID: PMC11291464 DOI: 10.3389/fmicb.2024.1443682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Dehalogenating bacteria are still deficient when targeted to deal with chlorinated hydrocarbons (CHCs) contamination: e.g., slow metabolic rates, limited substrate range, formation of toxic intermediates. To enhance its dechlorination capacity, biochar and its composites with appropriate surface activity and biocompatibility are selected for coupled dechlorination. Because of its special surface physical and chemical properties, it promotes biofilm formation by dehalogenating bacteria on its surface and improves the living environment for dehalogenating bacteria. Next, biochar and its composites provide active sites for the removal of CHCs through adsorption, activation and catalysis. These sites can be specific metal centers, functional groups or structural defects. Under microbial mediation, these sites can undergo activation and catalytic cycles, thereby increasing dechlorination efficiency. However, there is a lack of systematic understanding of the mechanisms of dechlorination in biogenic and abiogenic systems based on biochar. Therefore, this article comprehensively summarizes the recent research progress of biochar and its composites as a "Taiwan balm" for the degradation of CHCs in terms of adsorption, catalysis, improvement of microbial community structure and promotion of degradation and metabolism of CHCs. The removal efficiency, influencing factors and reaction mechanism of the degraded CHCs were also discussed. The following conclusions were drawn, in the pure biochar system, the CHCs are fixed to its surface by adsorption through chemical bonds on its surface; the biochar composite material relies on persistent free radicals and electron shuttle mechanisms to react with CHCs, disrupting their molecular structure and reducing them; biochar-coupled microorganisms reduce CHCs primarily by forming an "electron shuttle bridge" between biological and non-biological organisms. Finally, the experimental directions to be carried out in the future are suggested to explore the optimal solution to improve the treatment efficiency of CHCs in water.
Collapse
Affiliation(s)
- Shixin Niu
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Changsuo Li
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Shuai Gao
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Jingya Tian
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Chao Zhang
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Lixia Li
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Yao Huang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
7
|
Da Y, Xu M, Ma J, Gao P, Zhang X, Yang G, Wu J, Song C, Long L, Chen C. Remediation of cadmium contaminated soil using K 2FeO 4 modified vinasse biochar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115171. [PMID: 37348221 DOI: 10.1016/j.ecoenv.2023.115171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/14/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
The remediation of cadmium (Cd) contaminated soil is challenging for agricultural practices. In this study, a novel vinasse biochar modified by potassium ferrate (K2FeO4) was synthesized to immobilize Cd in agricultural soil. Three biochars [i.e., vinasse biochar (BC), KMnO4 modified vinasse biochar (MnBC), and K2FeO4 modified vinasse biochar (FeBC)] were applied to compare their efficiencies of Cd immobilization. The results showed that the orders of pH, ash content, and functional groups in different biochar were the same following BC < MnBC < FeBC. Scanning electron microscope images showed that the FeBC has more micropores than MnBC and BC. X-ray diffraction identified manganese oxides and iron oxides within MnBC and FeBC, indicating that Mn and Fe were well loaded on the biochar. In the soil-based pot experiment, both MnBC and FeBC significantly reduced soil available Cd by 23-38% and 36-45% compared with the control, respectively (p < 0.05). In addition, the application of BC, MnBC, and FeBC significantly increased the yield, chlorophyll, and vitamin C of Chinese cabbage (p < 0.05), and decreased its Cd uptake compared with the control. Notably, shoot Cd significantly reduced when 2% FeBC was applied (p < 0.05). Overall, using K2FeO4 to modify vinasse biochar enriched the surface functional groups and minerals as well as reduced Cd availability in soil and its uptake by the plant. Our study showed that K2FeO4 modified vinasse biochar could be used as an ideal amendment for the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Yinchen Da
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Min Xu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jing Ma
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh 15261, USA
| | - Xiaohong Zhang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Yang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Wu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Chun Song
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Lulu Long
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Chen
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Yang L, Guo X, Liang S, Yang F, Wen M, Yuan S, Xiao K, Yu W, Hu J, Hou H, Yang J. A sustainable strategy for recovery of phosphorus as vivianite from sewage sludge via alkali-activated pyrolysis, water leaching and crystallization. WATER RESEARCH 2023; 233:119769. [PMID: 36841170 DOI: 10.1016/j.watres.2023.119769] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
A sustainable strategy for P recovery from sewage sludge via alkali-activated pyrolysis, water leaching and crystallization was proposed, and a high value-added product of vivianite was recovered. Effects of the type and dose of alkali activator on P transformation during sludge pyrolysis were investigated. 50 wt% dose of KHCO3 was determined as the alkali-activated pyrolysis condition. The content of water-soluble P (referred to as Water-P) in biochar derived from raw sludge (referred to as RS) and ferric sludge (Fenton's reagent conditioned sludge, referred to as FS) by KHCO3-activated pyrolysis at different temperatures was compared. The Fe element in the Fenton's reagent enhanced the content of Fe-bound P in the dewatered sludge, which was readily transformed into potassium phosphate during KHCO3-activated pyrolysis, thus increasing the Water-P content in the biochar derived from FS. The proportions of Water-P to total P in the biochar samples obtained by KHCO3-activated pyrolysis of RS and FS at 600 °C were 72.5% and 96.2%, respectively, which were notably higher than those in the biochar samples obtained by direct pyrolysis of RS and FS (3.5% and 0.5%), respectively. The water leaching solution of biochar obtained by KHCO3-activated pyrolysis of FS at 600 °C was purified to remove impurity elements, and vivianite with high purity was finally recovered by crystallization. A total P recovery efficiency of 88.08% was achieved throughout the process from sewage sludge to the final vivianite product. This study proposes a promising and sustainable approach for realizing the recovery of high value-added product vivianite from sewage sludge.
Collapse
Affiliation(s)
- Liang Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiao Guo
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Sha Liang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, China.
| | - Fan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Mingxuan Wen
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shushan Yuan
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Wenbo Yu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Jingping Hu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Huijie Hou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
9
|
Liu Y, Ji X, Wang Y, Zhang Y, Zhang Y, Li W, Yuan J, Ma D, Sun H, Duan J. A Stable Fe-Zn Modified Sludge-Derived Biochar for Diuron Removal: Kinetics, Isotherms, Mechanism, and Practical Research. Molecules 2023; 28:molecules28062868. [PMID: 36985840 PMCID: PMC10058066 DOI: 10.3390/molecules28062868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
To remove typical herbicide diuron effectively, a novel sludge-derived modified biochar (SDMBC600) was prepared using sludge-derived biochar (SDBC600) as raw material and Fe-Zn as an activator and modifier in this study. The physico-chemical properties of SDMBC600 and the adsorption behavior of diuron on the SDMBC600 were studied systematically. The adsorption mechanisms as well as practical applications of SDMBC600 were also investigated and examined. The results showed that the SDMBC600 was chemically loaded with Fe-Zn and SDMBC600 had a larger specific surface area (204 m2/g) and pore volume (0.0985 cm3/g). The adsorption of diuron on SDMBC600 followed pseudo-second-order kinetics and the Langmuir isotherm model, with a maximum diuron adsorption capacity of 17.7 mg/g. The biochar could maintain a good adsorption performance (8.88-12.9 mg/g) under wide water quality conditions, in the pH of 2-10 and with the presence of humic acid and six typical metallic ions of 0-20 mg/L. The adsorption mechanisms of SDMBC600 for diuron were found to include surface complexation, π-π binding, hydrogen bonding, as well as pore filling. Additionally, the SDMBC600 was tested to be very stable with very low Fe and Zn leaching concentration ≤0.203 mg/L in the wide pH range. In addition, the SDMBC600 could maintain a high adsorption capacity (99.6%) after four times of regeneration and therefore, SDMBC600 could have a promising application for diuron removal in water treatment.
Collapse
Affiliation(s)
- Yucan Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Xianguo Ji
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Ying Wang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yan Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yanxiang Zhang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Wei Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiang Yuan
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dong Ma
- Rural Environmental Engineering Center of Qingdao, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongwei Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Jinming Duan
- Centre for Water Management and Reuse, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| |
Collapse
|
10
|
Zhu Q, Liang Y, Zhang Q, Zhang Z, Wang C, Zhai S, Li Y, Sun H. Biochar derived from hydrolysis of sewage sludge influences soil properties and heavy metals distributed in the soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130053. [PMID: 36182884 DOI: 10.1016/j.jhazmat.2022.130053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Sewage sludge contains a large number of nutrients and dangerous substances, when sludge was processed into sludge hydrochar that was added to the soil, which not only solve the problem of sludge disposal, but also amend the soil and fix pollutants in the soil. However, it was lack of report on the effect of the sludge hydrochar on soil compositions and soil microorganism community structures until now. In the present study, the hydrothermal carbonization method is used to prepare hydrochar from sewage sludge at temperatures of 180 ℃ and 240 ℃ at durations of 6 h and 15 h in this paper. The effects of the prepared sludge hydrochar on soil-derived dissolved organic matter (DOM), the content of total dissolved nitrogen (TDN) and NO3--N in soil, and the community structure of soil bacteria and fungi were evaluated. Furthermore, the change rules in heavy metal speciation in soils treated with sludge hydrochar were investigated. With the increase in the preparation temperature and dosage of sludge hydrochar, the main components of DOM changed from soluble microbial byproducts to fulvic acid-like and humic acid-like fractions through UV and fluorescence characterization. The sludge hydrochar prepared at low temperature could significantly increase the contents of TDN and NO3--N in the soil. Affected by sludge hydrochar, the dominant phylum of the bacterial community changed from Proteobacteria to Actinobacteria, and the dominant phylum in the fungal community did not change, but its relative abundance increased. Finally, the sludge hydrochar obtained when the carbonization time was 15 h was more beneficial to reduce the total amount and available content of heavy metals in the soil. The study provides a basis for sludge hydrochar application for the soil amendment.
Collapse
Affiliation(s)
- Qing Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yafeng Liang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Qi Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Zhiyuan Zhang
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, PR China.
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| | - Sheng Zhai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yanhua Li
- School of Environment and Planning, Liaocheng University, Liaocheng 252059, PR China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
11
|
Zhang C, Li H, Yang X, Tan X, Wan C, Liu X. Characterization of electrodes modified with sludge-derived biochar and its performance of electrocatalytic oxidation of azo dyes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116445. [PMID: 36352724 DOI: 10.1016/j.jenvman.2022.116445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Pyrolysis of waste sludge in sewage treatment can achieve a substantial reduction in solid waste and obtain sludge-based biochars with multiple functions. However, the electrochemical properties of sludge-derived biochar as electrode modification material and the electrocatalytic ability of biochar-modified electrodes are still unclear. In this study, sludge-based biochars were prepared at various pyrolysis temperatures (400 °C, 500 °C, 600 °C, 700 °C, and 800 °C) and then were cast on glassy carbon electrodes to fabricate composite biochar-electrodes (GC400, GC500, GC600, GC700, and GC800). The results of elemental analysis and Raman spectra showed that sludge-based biochar prepared at higher temperatures exhibited higher aromaticity and degree of defect structures. And the results of cyclic voltammetry and electrochemical impedance spectra confirmed that biochar-modified electrodes prepared at higher temperatures (>600 °C) possessed better electrocatalytic activity and electrochemical stability, and their higher oxygen evolution potential than control test could improve the electrocatalytic efficiency. In the electrocatalytic oxidation of methyl orange, the removal rate with GC800 was the highest, reaching 94.49% within 240 min, and the removal rates with other composite electrodes were 90.61% (GC700) > 86.96% (GC600) > 80.32% (GC). The free radical quenching experiment revealed that the electrocatalytic degradation of methyl orange mainly depended on the indirect oxidation of hydroxyl radicals generated by electrocatalysis, accounting for 81.3% of the removal rate. The biochar-modified electrode not only greatly improved the electrocatalytic ability of the electrode for the degradation of azo dyes, but also achieved the recycling application of products after pyrolysis of sludge waste.
Collapse
Affiliation(s)
- Chen Zhang
- Shanghai Municipal Engineering Design Institute Group Co Ltd, Shanghai, 200092, China
| | - Huiqi Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Xue Yang
- Shanghai Municipal Engineering Design Institute Group Co Ltd, Shanghai, 200092, China.
| | - Xuejun Tan
- Shanghai Municipal Engineering Design Institute Group Co Ltd, Shanghai, 200092, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
12
|
Jing F, Guan J, Tang W, Chen J. Mechanistic insight into adsorptive removal of ionic NOR and nonionic DEP organic contaminates by clay-biochar composites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119881. [PMID: 35952988 DOI: 10.1016/j.envpol.2022.119881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The synthesis of clay-biochar composite has been recognized as an effective way to enhance the removal of pollutants. The interaction between clay mineral and biomass during thermal pyrolysis and the sorption capacity for ionic/nonionic organic containments have not been elaborated. In this study, two types of biochar were obtained from pyrolytic carbonization of the cellulosic-rich corn straw (C) and lignin-rich pine wood (P) at 500 or 700 °C. Typical clay minerals kaolinite and montmorillonite were selected to prepare clay-biochar composite. The results showed that the addition of clay mineral could strengthen dehydration reaction of corn straw biomass and reinforce its carbon structure. Montmorillonite-biochar composite owned more CC functional groups and porous structure than kaolinite-biochar composite. The addition of clay minerals could promote electrostatic attraction of ionic formed norfloxacin (NOR) on clay-pine wood biochar. However, the sorption capacity of nonionic diethyl phthalate (DEP) adsorption on clay-corn straw biochar decreased, owing to that clay increased the compactness of the biochar carbon structure, thus inhabited hydrophobic partition of nonionic organic compounds on disordered carbon fraction. The results from this study provide insights into the suitable contaminated site remediation by clay-biochar composite.
Collapse
Affiliation(s)
- Fanqi Jing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China
| | - Junjie Guan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China
| | - Wei Tang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China
| | - Jiawei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China.
| |
Collapse
|
13
|
Hu J, Zhao L, Luo J, Gong H, Zhu N. A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water: Modifications, applications and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129437. [PMID: 35810514 DOI: 10.1016/j.jhazmat.2022.129437] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/02/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Conversion of sewage sludge to biochar for contaminants removal from water achieves the dual purpose of solid waste reuse and pollution elimination, in line with the concept of circular economy and carbon neutrality. However, the current understanding of sludge-derived biochar (SDB) for wastewater treatment is still limited, with a lack of summary regarding the effect of modification on the mechanism of SDB adsorption/catalytic removal aqueous contaminants. To advance knowledge in this aspect, this paper systematically reviews the recent studies on the use of (modified) SDB as adsorbents and in persulfate-based advanced oxidation processes (PS-AOPs) as catalysts for the contaminants removal from water over the past five years. Unmodified SDB not only exhibits stronger cation exchange and surface precipitation for heavy metals due to its nitrogen/mineral-rich properties, but also can provide abundant catalytic active sites for PS. An emphatic summary of how certain adsorption removal mechanisms of SDB or its catalytic performance in PS-AOPs can be enhanced by targeted regulation/modification such as increasing the specific surface area, functional groups, graphitization degree, N-doping or transition metal loading is presented. The interference of inorganic ions/natural organic matter is one of the unavoidable challenges that SDB is used for adsorption/catalytic removal of contaminants in real wastewater. Finally, this paper presents the future perspectives of SDB in the field of wastewater treatment. This review can contribute forefront knowledge and new ideas for advancing sludge treatment toward sustainable green circular economy.
Collapse
Affiliation(s)
- Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinming Luo
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huabo Gong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|