1
|
Rutland H, You J, Liu H, Bull L, Reynolds D. A Systematic Review of Machine-Learning Solutions in Anaerobic Digestion. Bioengineering (Basel) 2023; 10:1410. [PMID: 38136001 PMCID: PMC10740876 DOI: 10.3390/bioengineering10121410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The use of machine learning (ML) in anaerobic digestion (AD) is growing in popularity and improves the interpretation of complex system parameters for better operation and optimisation. This systematic literature review aims to explore how ML is currently employed in AD, with particular attention to the challenges of implementation and the benefits of integrating ML techniques. While both lab and industry-scale datasets have been used for model training, challenges arise from varied system designs and the different monitoring equipment used. Traditional machine-learning techniques, predominantly artificial neural networks (ANN), are the most commonly used but face difficulties in scalability and interpretability. Specifically, models trained on lab-scale data often struggle to generalize to full-scale, real-world operations due to the complexity and variability in bacterial communities and system operations. In practical scenarios, machine learning can be employed in real-time operations for predictive modelling, ensuring system stability is maintained, resulting in improved efficiency of both biogas production and waste treatment processes. Through reviewing the ML techniques employed in wider applied domains, potential future research opportunities in addressing these challenges have been identified.
Collapse
Affiliation(s)
- Harvey Rutland
- School of Computer Science, Electrical and Electronic Engineering, and Engineering Maths, University of Bristol, Bristol BS8 1QU, UK
| | - Jiseon You
- School of Engineering, University of the West of England, Bristol BS16 1QY, UK;
| | - Haixia Liu
- School of Computing and Creative Technologies, University of the West of England, Bristol BS16 1QY, UK; (H.L.); (L.B.)
| | - Larry Bull
- School of Computing and Creative Technologies, University of the West of England, Bristol BS16 1QY, UK; (H.L.); (L.B.)
| | - Darren Reynolds
- School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK;
| |
Collapse
|
2
|
Pexas G, Kyriazakis I. Hotspots and bottlenecks for the enhancement of the environmental sustainability of pig systems, with emphasis on European pig systems. Porcine Health Manag 2023; 9:53. [PMID: 37974286 PMCID: PMC10652603 DOI: 10.1186/s40813-023-00347-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Although pig systems start from a favourable baseline of environmental impact compared to other livestock systems, there is still scope to reduce their emissions and further mitigate associated impacts, especially in relation to nitrogen and phosphorous emissions. Key environmental impact hotspots of pig production systems are activities associated with feed production and manure management, as well as direct emissions (such as methane) from the animals and energy use. A major contributor to the environmental impacts associated with pig feed is the inclusion of soya in pig diets, especially since European pig systems rely heavily on soya imported from areas of the globe where crop production is associated with significant impacts of land use change, deforestation, carbon emissions, and loss of biodiversity. The "finishing" pig production stage contributes most to these environmental impacts, due to the amount of feed consumed, the efficiency with which feed is utilised, and the amount of manure produced during this stage. By definition therefore, any substantial improvements pig system environmental impact would arise from changes in feed production and manure management. In this paper, we consider potential solutions towards system environmental sustainability at these pig system components, as well as the bottlenecks that inhibit their effective implementation at the desired pace and magnitude. Examples include the quest for alternative protein sources to soya, the limits (perceived or real) to the genetic improvement of pigs, and the implementation of alternative manure management strategies, such as production of biogas through anaerobic digestion. The review identifies and discusses areas that future efforts can focus on, to further advance understanding around the potential sustainability benefits of modifications at various pig system components, and key sustainability trade-offs across the environment-economy-society pillars associated with synergistic and antagonistic effects when joint implementation of multiple solutions is considered. In this way, the review opens a discussion to facilitate the development of holistic decision support tools for pig farm management that account for interactions between the "feed * animal * manure" system components and trade-offs between sustainability priorities (e.g., environmental vs economic performance of pig system; welfare improvements vs environmental impacts).
Collapse
Affiliation(s)
- Georgios Pexas
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK.
| | - Ilias Kyriazakis
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| |
Collapse
|
3
|
Rodríguez-Alegre R, Zapata-Jiménez J, You X, Pérez-Moya M, Sanchis S, García-Montaño J. Nutrient recovery and valorisation from pig slurry liquid fraction with membrane technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162548. [PMID: 36870507 PMCID: PMC10060121 DOI: 10.1016/j.scitotenv.2023.162548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/25/2023] [Indexed: 05/21/2023]
Abstract
Livestock slurry has been reported to be a potential secondary raw material as it contains macronutrients ‑nitrogen, phosphorus and potassium-, which could be valorised as high-quality fertilizers if proper separation and concentration of valuable compounds is performed. In this work, pig slurry liquid fraction was assessed for nutrient recovery and valorisation as fertilizer. Some indicators were used to evaluate the performance of proposed train of technologies within the framework of circular economy. As ammonium and potassium species are highly soluble at the whole pH range, a study based on phosphate speciation at pH from 4 to 8 was assessed to improve the macronutrients recovery from the slurry, resulting in two different treatment trains at acidic and alkaline conditions. The acidic treatment system based on centrifugation, microfiltration and forward osmosis was applied to obtain a nutrient-rich liquid organic fertilizer containing 1.3 % N, 1.3 % P2O5 and 1.5 % K2O. The alkaline path of valorisation was composed by centrifugation and stripping by using membrane contactors to produce an organic solid fertilizer -7.7 % N, 8,0 % P2O5 and 2.3 % K2O-, ammonium sulphate solution -1.4 % N- and irrigation water. In terms of circularity indicators, 45.8 % of the initial water content and <50 % of contained nutrients were recovered - 28.3 % N, 43.5 % P2O5 and 46.6 % K2O - in the acidic treatment resulting in 68.68 g fertilizer per kg of treated slurry. 75.1 % of water was recovered as irrigation water and 80.6 % N, 99.9 % P2O5, 83.4 % K2O was valorised in the alkaline treatment, as 219.60 g fertilizer per kg of treated slurry. Treatment paths at acidic and alkaline conditions yield promising results for nutrients recovery and valorisation as the obtained products (nutrient rich organic fertilizer, solid soil amendment and ammonium sulphate solution) fulfil the European Regulation for fertilizers to be potentially used in crop fields.
Collapse
Affiliation(s)
- Rubén Rodríguez-Alegre
- Leitat Technological Center, Circular Economy department, C/ de La Innovació 2, 08225 Terrassa, Barcelona, Spain; Universitat Politécnica de Catalunya, Chemical Engineering department, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08019 Barcelona, Spain.
| | - Julia Zapata-Jiménez
- Leitat Technological Center, Circular Economy department, C/ de La Innovació 2, 08225 Terrassa, Barcelona, Spain.
| | - Xialei You
- Leitat Technological Center, Circular Economy department, C/ de La Innovació 2, 08225 Terrassa, Barcelona, Spain.
| | - Montserrat Pérez-Moya
- Universitat Politécnica de Catalunya, Chemical Engineering department, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08019 Barcelona, Spain.
| | - Sonia Sanchis
- Leitat Technological Center, Circular Economy department, C/ de La Innovació 2, 08225 Terrassa, Barcelona, Spain.
| | - Julia García-Montaño
- Leitat Technological Center, Circular Economy department, C/ de La Innovació 2, 08225 Terrassa, Barcelona, Spain.
| |
Collapse
|
4
|
Hollas CE, Rodrigues HC, Bolsan AC, Venturin B, Bortoli M, Antes FG, Steinmetz RLR, Kunz A. Swine manure treatment technologies as drivers for circular economy in agribusiness: A techno-economic and life cycle assessment approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159494. [PMID: 36257411 DOI: 10.1016/j.scitotenv.2022.159494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion has been employed as a technology capable of adding value to waste coupled with environmental impact mitigation. However, many issues need to be elucidated to ensure the systems viability based on this technology. In this sense, the present study evaluated technically, environmentally, and economically, four configurations of swine waste treatment systems focused on the promotion of decarbonization and circularity of the swine chain. For this, a reference plant, based on a compact treatment process named SISTRATES® (Portuguese acronym for swine effluent treatment system) was adopted to serve as a model for comparison and validation. The results showed the importance of prioritization of the energy recuperation routes through anaerobic digestion, providing increased economic benefits and minimizing environmental damage. Thus, the SISTRATES® configuration was the one that presented the best designs in a circular context, maximizing the recovery of energy and nutrients, along with the reduction of greenhouse gas emissions, ensuring the sustainability of the pig production chain.
Collapse
Affiliation(s)
- C E Hollas
- Universidade Estadual do Oeste do Paraná, UNIOESTE/CCET/PGEAGRI, Cascavel, PR, Brazil
| | - H C Rodrigues
- Universidade Tecnológica Federal do Paraná, 85660-000 Dois Vizinhos, PR, Brazil
| | - A C Bolsan
- Universidade Tecnológica Federal do Paraná, 85660-000 Dois Vizinhos, PR, Brazil
| | - B Venturin
- Universidade Estadual do Oeste do Paraná, UNIOESTE/CCET/PGEAGRI, Cascavel, PR, Brazil
| | - M Bortoli
- Universidade Tecnológica Federal do Paraná, 85601-970 Francisco Beltrão, PR, Brazil
| | - F G Antes
- Embrapa Suínos e Aves, 89715-899 Concórdia, SC, Brazil
| | | | - A Kunz
- Universidade Estadual do Oeste do Paraná, UNIOESTE/CCET/PGEAGRI, Cascavel, PR, Brazil; Embrapa Suínos e Aves, 89715-899 Concórdia, SC, Brazil.
| |
Collapse
|
5
|
Company E, Farrés M, Colprim J, Magrí A. Exploring the recovery of potassium-rich struvite after a nitrification-denitrification process in pig slurry treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157574. [PMID: 35882320 DOI: 10.1016/j.scitotenv.2022.157574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The integration of biological nitrogen (N) removal with struvite-type material recovery, which contained phosphorus (P) and potassium (K), was proved to be technically feasible in pig slurry treatment. Phosphate (PO4) salts were precipitated by raising the pH-value, using denitrified effluent and waste sludge purged from the bioreactor. When P was limiting, the unbalanced composition of the denitrified effluent resulted in low K-removal efficiency from the liquid phase; 10 % maximum when the initial pH-value was adjusted to 11.5 (93 % PO4-P recovery). By processing the waste sludge in two steps, using first ethylenediaminetetraacetic acid (EDTA) as an acidifier to release PO4 while preventing calcium interference, the K-removal efficiency reached 25 % (75 % PO4-P recovery). When K was limiting, the addition of newberyite particles resulted in the highest K-removal efficiency, up to 90 % (under online pH control to 10.5). Overall, new opportunities are envisaged for producing second-generation fertilizers potentially containing 0-1 % N, 11-17 % P and 6-8 % K.
Collapse
Affiliation(s)
- Emma Company
- LEQUIA, Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003 Girona, Catalonia, Spain.
| | - Moisès Farrés
- Granges Terragrisa SL, Paratge de La Gleva, Camí de Burrissola s/n, E-08508 Les Masies de Voltregà (Barcelona), Catalonia, Spain.
| | - Jesús Colprim
- LEQUIA, Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003 Girona, Catalonia, Spain.
| | - Albert Magrí
- LEQUIA, Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003 Girona, Catalonia, Spain.
| |
Collapse
|
6
|
Persson T, Rueda-Ayala V. Phosphorus retention and agronomic efficiency of refined manure-based digestate—A review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.993043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Digestate, a by-product from anaerobic digestion of organic materials such as animal manure, is considered a suitable plant fertilizer. However, due to its bulkiness and low economic value, it is costly to transport over long distances and store for long periods. Refinement processes to valorize digestate and facilitate its handling as a fertilizer include precipitation of phosphorus-rich mineral compounds, such as struvite and calcium phosphates, membrane filtration methods that concentrate plant nutrients in organic products, and carbonization processes. However, phosphorus retention efficiency in output products from these processes can vary considerably depending on technological settings and characteristics of the digestate feedstock. The effects of phosphorus in plant fertilizers (including those analogous or comparable to refined digestate products) on agronomic productivity have been evaluated in multiple experiments. In this review, we synthesized knowledge about different refinement methods for manure-based digestate as a means to produce phosphorus fertilizers, thereby providing the potential to increase phosphorus retention in the food production chain, by combining information about phosphorus flows in digestate refinement studies and agronomic fertilizer studies. It was also sought to identify the range, uncertainty, and potential retention efficiency by agricultural crops of the original phosphorus amount in manure-based digestate. Refinement chains with solid/wet phase separation followed by struvite or calcium phosphate precipitation or membrane filtration of the wet phase and carbonization treatments of the solid phase were included. Several methods with high potential to extract phosphorus from manure-based wet phase digestate in such a way that it could be used as an efficient plant fertilizer were identified, with struvite precipitation being the most promising method. Synthesis of results from digestate refinement studies and agronomic fertilizer experiments did not support the hypothesis that solid/wet separation followed by struvite precipitation, or any other refinement combination, results in higher phosphorus retention than found for unrefined digestate. Further studies are needed on the use of the phosphorus in the solid phase digestate, primarily on phosphorus-rich soils representative of animal-dense regions, to increase understanding of the role of digestate refinement (particularly struvite precipitation) in phosphorus recycling in agricultural systems.
Collapse
|
7
|
Hollas CE, Rodrigues HC, Oyadomari VMA, Bolsan AC, Venturin B, Bonassa G, Tápparo DC, Abilhôa HCZ, da Silva JFF, Michelon W, Cavaler JP, Antes FG, Steinmetz RLR, Treichel H, Kunz A. The potential of animal manure management pathways toward a circular economy: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73599-73621. [PMID: 36071358 DOI: 10.1007/s11356-022-22799-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Improper disposal of animal waste is responsible for several environmental problems, causing eutrophication of lakes and rivers, nutrient overload in the soil, and the spread of pathogenic organisms. Despite the potential to cause adverse ecological damage, animal waste can be a valuable source of resources if incorporated into a circular concept. In this sense, new approaches focused on recovery and reuse as substitutes for traditional processes based on removing contaminants in animal manure have gained attention from the scientific community. Based on this, the present work reviewed the literature on the subject, performing a bibliometric and scientometric analysis of articles published in peer-reviewed journals between 1991 and 2021. Of the articles analyzed, the main issues addressed were nitrogen and phosphorus recovery, energy generation, high-value-added products, and water reuse. The energy use of livestock waste stands out since it is characterized as a consolidated solution, unlike other routes still being developed, presenting the economic barrier as the main limiting factor. Analyzing the trend of technological development through the S curve, it was possible to verify that the circular economy in the management of animal waste will enter the maturation phase as of 2036 and decline in 2056, which demonstrates opportunities for the sector's development, where animal waste can be an economic agent, promoting a cleaner and more viable product for a sustainable future.
Collapse
Affiliation(s)
- Camila Ester Hollas
- UNIOESTE/CCET/PGEAGRI, Universidade Estadual Do Oeste Do Paraná, Cascavel, PR, Brazil
| | | | | | | | - Bruno Venturin
- UNIOESTE/CCET/PGEAGRI, Universidade Estadual Do Oeste Do Paraná, Cascavel, PR, Brazil
| | - Gabriela Bonassa
- UNIOESTE/CCET/PGEAGRI, Universidade Estadual Do Oeste Do Paraná, Cascavel, PR, Brazil
| | | | | | | | | | - Jadiane Paola Cavaler
- UNIOESTE/CCET/PGEAGRI, Universidade Estadual Do Oeste Do Paraná, Cascavel, PR, Brazil
| | | | | | - Helen Treichel
- Universidade Federal da Fronteira Sul, Erechim, RS, 99700-970, Brazil
| | - Airton Kunz
- UNIOESTE/CCET/PGEAGRI, Universidade Estadual Do Oeste Do Paraná, Cascavel, PR, Brazil.
- Embrapa Suínos E Aves, Concórdia, SC, 89715-899, Brazil.
| |
Collapse
|
8
|
Lee JC, Joo JH, Chun BH, Moon K, Song SH, Kim YJ, Lee SM, Lee AH. Isolation and screening of indigenous microalgae species for domestic and livestock wastewater treatment, biodiesel production, and carbon sequestration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115648. [PMID: 35949094 DOI: 10.1016/j.jenvman.2022.115648] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The use of indigenous microalgae strains for locally generated domestic (DWW) and livestock wastewater (LWW) treatment is essential for effective and economical applications. Phototrophic microalgae-based biofuel production also contributes to carbon sequestration via CO2 fixation. However, simultaneous consideration of both isolation and screening procedures for locally collected indigenous microalgae strains is not common in the literature. We aimed to isolate indigenous microalgae strains from locally collected samples on coastlines and islands in South Korea. Among five isolated strains, Chlorella sorokiniana JD1-1 was selected for DWW and LWW treatment due to its ability to grow in waste resources. This strain showed a higher specific growth rate in DWW than artificial growth medium (BG-11) with a range of 0.137-0.154 d-1. During cultivation, 96.5%-97.1% of total nitrogen in DWW and 89.2% in LWW was removed. Over 99% of total phosphorus in DWW and 96.4% in LWW was also removed. Finally, isolated C. sorokiniana JD1-1 was able to fix CO2 within a range of 0.0646-0.1043 g CO2 L-1 d-1. These results support the domestic applications of carbon sequestration-efficient microalgae in the waste-to-energy nexus.
Collapse
Affiliation(s)
- Jae-Cheol Lee
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea.
| | - Jae-Hyoung Joo
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Byung Hee Chun
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Kira Moon
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Seung Hui Song
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Yun Ji Kim
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Sung Moon Lee
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| | - Aslan Hwanhwi Lee
- Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), Mokpo, 58762, Republic of Korea
| |
Collapse
|
9
|
Vieira de Mendonça H, Silva Dos Santos M. Co-digestion of deep bedding and wastewater from pig farming: A new strategy for bioenergy increase and biofertilizer recovery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114310. [PMID: 34936964 DOI: 10.1016/j.jenvman.2021.114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
In the present study, a pilot-scale plug flow reactor was used for anaerobic co-digestion of swine wastewater (SWW) and deep bedding (DB). The reactor was operated with organic loads between 315.6 and 782.8 kgCOD d-1 in winter and summer. The experiment was conducted in 4 phases with the addition of DB in SWW in proportions of 0, 5, 10 and 15 tons. Biogas productions 3 times higher were recorded when 15 ton of DB were applied, generating 634.5 kWh d-1 of bioenergy in summer and 267 kWh d-1 in winter. Application of DB in winter promoted stability in biogas production. CH4 concentrations from 60 to 68% were recorded in winter and from 61 to 72% in summer. Methane yield was maximum in summer with application of 15 ton of DB (0.343 m3 KgCODRem-1). Removals of volatile solids and COD were within the ranges of 60-70 and 61-84%, respectively. There was no accumulation of volatile fatty acids (VFAs), nor pronounced decrease of pH in the reactor. The biofertilizer produced in all experimental stages can be used for agricultural cultivation with application rate defined based on the concentrations of Na and K to avoid soil salinization.
Collapse
Affiliation(s)
- Henrique Vieira de Mendonça
- Post-graduate in Agricultural and Environmental Engineering, Institute of Technology, Engineering Department, Federal Rural University of Rio de Janeiro, Campus Seropédica, 23890-000, Seropédica, Rio de Janeiro, RJ, Brazil.
| | - Mônica Silva Dos Santos
- Post-graduate in Agricultural and Environmental Engineering, Institute of Technology, Engineering Department, Federal Rural University of Rio de Janeiro, Campus Seropédica, 23890-000, Seropédica, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Digital Eco-Design and Life Cycle Assessment—Key Elements in a Circular Economy: A Case Study of a Conventional Desk. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In recent times, there has been an indisputable need to move towards a more sustainable economy, known as a circular economy, which is basically aimed at reducing the consumption of newly extracted raw materials to manufacture products, and thus, reduces waste generation by recycling products beyond their useful life to ultimately close the economic flow of the product. For the economy generated by products to close the circle, it is essential to tackle the problem at the source, that is, the process to achieve the desired product should be conducted by designing the product with environmental criteria (eco-design) and analysing its life cycle from the extraction process to the point when it ends its useful life (LCA). This article presents an ECO + LCA methodology that provides designers with an easy way of visualising the effect of their design decisions on the final environmental impact of the product. This methodology was tested on a case study of a conventional desk, with four alternative scenarios presented and an assessment of their final impact with a cradle-to-grave perspective. The final design obtained reduces the environmental impact by more than 30% and reduces costs by more than 11%.
Collapse
|