1
|
Hamdi FM, Ganbat N, Altaee A, Samal AK, Ibrar I, Zhou JL, Sharif AO. Hybrid and enhanced electrokinetic system for soil remediation from heavy metals and organic matter. J Environ Sci (China) 2025; 147:424-450. [PMID: 39003060 DOI: 10.1016/j.jes.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 07/15/2024]
Abstract
The electrokinetic (EK) process has been proposed for soil decontamination from heavy metals and organic matter. The advantages of the EK process include the low operating energy, suitability for fine-grained soil decontamination, and no need for excavation. During the last three decades, enhanced and hybrid EK systems were developed and tested for improving the efficiency of contaminants removal from soils. Chemically enhanced-EK processes exhibited excellent efficiency in removing contaminants by controlling the soil pH or the chemical reaction of contaminants. EK hybrid systems were tested to overcome environmental hurdles or technical drawbacks of decontamination technologies. Hybridization of the EK process with phytoremediation, bioremediation, or reactive filter media (RFM) improved the remediation process performance by capturing contaminants or facilitating biological agents' movement in the soil. Also, EK process coupling with solar energy was proposed to treat off-grid contaminated soils or reduce the EK energy requirements. This study reviews recent advancements in the enhancement and hybrid EK systems for soil remediation and the type of contaminants targeted by the process. The study also covered the impact of operating parameters, imperfect pollution separation, and differences in the physicochemical characteristics and microstructure of soil/sediment on the EK performance. Finally, a comparison between various remediation processes was presented to highlight the pros and cons of these technologies.
Collapse
Affiliation(s)
- Faris M Hamdi
- Centre for Green Technology, School of Civil and Environmental Engineering, The University of Technology Sydney, 15 Broadway, NSW 2007, Australia; Department of Civil Engineering, Jazan University, Jazan 82822, Saudi Arabia
| | - Namuun Ganbat
- Centre for Green Technology, School of Civil and Environmental Engineering, The University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, The University of Technology Sydney, 15 Broadway, NSW 2007, Australia.
| | - Akshaya K Samal
- Centre for Nano and Material Sciences, Jain University, Ramanagara, Bangalore, Karnataka 562 112, India
| | - Ibrar Ibrar
- Centre for Green Technology, School of Civil and Environmental Engineering, The University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, The University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Adel O Sharif
- School of Mechanical Sciences, Faculty of Engineering and Physical Sciences, University of Surrey, Australia
| |
Collapse
|
2
|
Fardin AB, Jamshidi-Zanjani A, Saeedi M. A comprehensive review of soil remediation contaminated by persistent organic pollutants using electrokinetic: Challenging enhancement techniques. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123587. [PMID: 39657472 DOI: 10.1016/j.jenvman.2024.123587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
The hydrophobic, hard-to-naturally-decompose compounds, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pesticides, are categorized as persistent organic pollutants (POPs). POPs are toxic/hazardous and present serious risks to human health. Electrokinetic (EK) remediation is highly flexible and cost-effective, suitable for both in-situ and ex-situ applications. It effectively targets a wide range of contaminants, including metals and organic compounds, especially in low-permeability and low-hydraulic conductivity soils, where traditional methods are less effective. This technology is easy to install and can be combined with other strategies for enhanced remediation in complex soil environments. This paper underscores EK remediation as a promising method for addressing soil pollution caused by these organic pollutants, especially in low-permeability soil. The present review starts with the classification, toxicity effects, and source of POPs in the environment. Theoretical aspects and fundamentals of EK, including transport mechanisms and principles, are also reviewed. The theoretical underpinnings of effective factors are comprehensively explored, such as surface charge, zeta potential, pHpzc, and numerical modeling of transport fluxes. Moreover, a comprehensive examination is undertaken regarding the operation and design considerations of the EK process, encompassing factors like pH, electrode arrangement, electrolyte, and voltage. Subsequently, it is highlighted that EK has the potential to come in synergistically in contact with other remediation technologies to augment the POPs' degradation. Various enhancement techniques are also explored, including solvent extraction, chemical oxidation, bioremediation, and permeable reactive barriers to combine with EK. Each method is examined in terms of its advantages, limitations, recent developments, and ongoing research. Finally, the potential and challenges associated with enhanced EK methods combined with other techniques for the removal of POPs were reviewed.
Collapse
Affiliation(s)
- Ali Barati Fardin
- Department of Mining and Environmental Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Jamshidi-Zanjani
- Department of Mining and Environmental Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Mohsen Saeedi
- University Canada West, 1461, Granville St., Vancouver, BC, V6Z 0E5, Canada
| |
Collapse
|
3
|
Li Z, Li X. Bibliometric analysis and systematic review on the electrokinetic remediation of contaminated soil and sediment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 47:15. [PMID: 39666177 DOI: 10.1007/s10653-024-02330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Electrokinetic remediation (EKR) is a proficient, environmentally friendly separation technology for in-situ removal of contaminants in soil/sediment, distinguished for its ease of implementation and minimal prerequisites compared to other remediation technologies. To comprehensively understand the research focus and progress related to EKR of contaminated soil/sediment, a bibliometric analysis was conducted on 1593 publications retrieved from the Web of Science Core Collection (WOSCC) database. This analysis utilized data mining and knowledge discovery techniques through Bibliometrix, VOSviewer, and CiteSpace software. The results revealed a rising trend in annual publication numbers, with China leading in the number of publications. The primary journals in this field included the Journal of Hazardous Materials, Chemosphere, and Separation and Purification Technology. The primary disciplines contributed to this field included "Environmental Sciences", "Engineering, Environmental", "Engineering, Chemical", and "Electrochemistry". Keyword co-occurrence and burst analysis indicated that current EKR-related research mainly focuses on the remediation of soil/sediments contaminated by heavy metals (HMs) and organic pollutants (OPs). Furthermore, the EKR remediation improvement method emerged as the prevailing and future research hotspots and development directions. Future research could integrate numerical simulations and various methodologies to predict and assess the migration of pollutants and the efficiency of remediation efforts. Additionally, these studies could explore the effects of EKR on the physicochemical properties and microbial diversity of soil/sediment to provide a theoretical foundation for applying EKR in soil/sediment remediation.
Collapse
Affiliation(s)
- Zhonghong Li
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Xiaoguang Li
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| |
Collapse
|
4
|
Zhang M, Feng M, Xu Z, Li J, Peng C. Electrokinetically-delivered persulfate coupled with thermal conductive heating for remediation of petroleum hydrocarbons contaminated low permeability soil. CHEMOSPHERE 2024; 356:141914. [PMID: 38588899 DOI: 10.1016/j.chemosphere.2024.141914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
In this study, electrokinetically-delivered persulfate (PS) coupled with thermal conductive heating (TCH) method was proposed for the remediation of petroleum hydrocarbons (PHs) contaminated low-permeability soil, based on the investigation of PS injection and activation by different electric field form, effective heating radius of TCH to activate PS, and their influencing factors. The uniform delivery and effective activation of PS were unrealizable by one-dimensional electric field (1 V/cm) with the operation of cathode injection, anode injection, bipolar injection, polarity-reversal, or bipolar injection coupled polarity-reversal, which would result in large spatial difference of soil pH and PHs residual. Similar results were obtained under the two-dimensional symmetric electric field (TEF) due to the large spatial difference in electric field intensity. Superimposed electric field (SEF, 1 V/cm) that based on the intermittent worked electrode groups coupled with polarity-reversal (every 3 h) and bipolar injection (10% PS solution) operation could achieve homogenized mass transfer of PS (53.8-65.7 g/kg, average 60.0 g/kg) in 15 days, due to the positive correlation between electric field intensity and transport of ionic substance. Meanwhile, the difference in decontamination efficiency caused by difference in PS activation efficiency could be reduced, since the heating rod was placed at the position where the concentrations of PS was the lowest, whereat the removal of PHs could not rely on alkali activated PS (cathode), anodic oxidation (anode), and electrochemical activated PS (cathode and anode). The residual concentration of PHs in soil remediated by SEF/PS-TCH was in the range of 640.7-763.8 mg/kg (average 701.5 mg/kg), and the corresponding removal efficiency was 73.3%-77.6% (average75.4%). The research can provide an in-situ remediation method for organic contaminants in low permeability soil featured with more uniform PS injection and activation, and small spatial differences in remediation efficiency.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meiyun Feng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiqiang Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianan Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China; Zhejiang Tiandi Environmental Protection Technology Co., Ltd., Hangzhou, 310000, China.
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
5
|
Yang Y, Zhu F. An overview of electrokinetically enhanced chemistry technologies for organochlorine compounds (OCs) remediation from soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:529-548. [PMID: 38015392 DOI: 10.1007/s11356-023-31183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
In recent years, electrokinetic (EK) remediation technology has gained significant attention among researchers. This technology has proven effective in the remediation of low-permeability polluted soil. Organochlorines (OCs) are highly toxic, persistent, bioaccumulative, and capable of long-distance migration. They can also accumulate through the food chain, posing significant environmental risks. This paper provides a review of the reaction mechanism of combining chemical technology with EK remediation for the removal of several typical OCs. Furthermore, the factors influencing the efficiency of EK remediation, such as pH and ζ potential, voltage gradients, electrode materials, electrolytes, electrode arrangements, and soil types, are summarized. The paper also presents an overview of recent advancements in the methods of combining chemical technology with EK remediation for the treatment of OCs contaminated soil. Specifically, the research progress in surfactants-combined EK technology, chemical oxidation-combined EK technology, chemical reduction-combined EK technology, and chemical adsorption-combined EK technology is summarized. These findings serve as a foundation for ongoing and future research endeavors in the field. Further exploration and investigation in this area are essential for advancing the field and improving environmental remediation strategies.
Collapse
Affiliation(s)
- Yue Yang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, Shanxi, 030600, People's Republic of China
| | - Fang Zhu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, Shanxi, 030600, People's Republic of China.
| |
Collapse
|