1
|
Moktip T, Salaipeth L, Cope AE, Taherzadeh MJ, Watanabe T, Phitsuwan P. Current Understanding of Feather Keratin and Keratinase and Their Applications in Biotechnology. Biochem Res Int 2025; 2025:6619273. [PMID: 40308531 PMCID: PMC12041636 DOI: 10.1155/bri/6619273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/29/2025] [Indexed: 05/02/2025] Open
Abstract
The food industry generates substantial keratin waste, particularly chicken feathers, which are rich in amino acids and essential nutrients. However, the insolubility of keratin presents a significant challenge to its conversion. Keratinase, an enzyme produced by certain fungi and bacteria, offers a promising solution by degrading feather keratin into amino acids and soluble proteins. Among these, bacterial keratinase is notable for its superior stability and activity, although its production remains constrained, necessitating continued research to identify efficient microbial strains. Keratin-derived hydrolyzates, recognized for their biological and immunological properties, have garnered significant research interest. This review examines the structural characteristics of chicken feather keratin, its resistance to conventional proteases, and advances in keratinase production and purification techniques. Additionally, the keratin degradation mechanism and the adoption of environmentally friendly technologies for managing feather waste are explored. Finally, the review highlights the potential applications of keratinase across diverse industries, including animal feed and cosmetics.
Collapse
Affiliation(s)
- Thanakorn Moktip
- LigniTech-Lignin Technology Research Group, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| | - Lakha Salaipeth
- LigniTech-Lignin Technology Research Group, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
- Natural Resource Management and Sustainability, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| | - Ana Eusebio Cope
- Future Genetic Resources Cluster, Rice Breeding Innovation Platform, IRRI, Los Banos, Philippines
| | | | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan
| | - Paripok Phitsuwan
- LigniTech-Lignin Technology Research Group, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| |
Collapse
|
2
|
Wang Z, Xiao N, Guo S, Liu X, Liu C, Ai M. Unlocking the Potential of Keratin: A Comprehensive Exploration from Extraction and Structural Properties to Cross-Disciplinary Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1014-1037. [PMID: 39681472 DOI: 10.1021/acs.jafc.4c07102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The rapid expansion of the livestock and poultry industry has led to a considerable increase in slaughter byproducts; however, exploring their potential applications still needs to be improved. These underutilized byproducts, which include nails, hides, skins, and bones, represent a significant loss of valuable biological resources. Among these materials, keratin has garnered considerable attention due to its unique properties as a natural biopolymer. Keratin exhibits outstanding mechanical properties and biocompatibility and has attracted increasing attention for its recovery and conversion into relevant application materials. However, natural keratin typically has a high sulfur content, complex 3D structure, and abundant hydrogen and disulfide bonds, which cause challenges in application. Current extraction for keratin includes physical, chemical, biological, and hybrid approaches. Combining multiple methods synergistically enhances protein extraction efficiency and purity, and facilitates the exploration of structure and functional properties. This review encompasses the structural characteristics, properties, extraction methods, and research progress related to keratin. The preparation and application of keratin composite materials in different forms, such as fibers, films, hydrogels, and scaffolds, are illustrated. Applications in several fields, including biomedicine, flexible electronic components, environmental materials and food packaging are discussed. Hopefully, this paper will provide a comprehensive understanding and guidance for further development and application of keratin materials.
Collapse
Affiliation(s)
- Ziyuan Wang
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Nan Xiao
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Shanguang Guo
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Chunhong Liu
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Minmin Ai
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| |
Collapse
|
3
|
Chen M, Ma A, Sun Z, Xie B, Shi L, Chen S, Chen L, Xiong G, Wang L, Wu W. Enhancing activity of food protein-derived peptides: An overview of pretreatment, preparation, and modification methods. Compr Rev Food Sci Food Saf 2023; 22:4698-4733. [PMID: 37732471 DOI: 10.1111/1541-4337.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
Food protein-derived peptides have garnered considerable attention due to their potential bioactivities and functional properties. However, the limited activity poses a challenge in effective utilization aspects. To overcome this hurdle, various methods have been explored to enhance the activity of these peptides. This comprehensive review offers an extensive overview of pretreatment, preparation methods, and modification strategies employed to augment the activity of food protein-derived peptides. Additionally, it encompasses a discussion on the current status and future prospects of bioactive peptide applications. The review also addresses the standardization of mass production processes and safety considerations for bioactive peptides while examining the future challenges and opportunities associated with these compounds. This comprehensive review serves as a valuable guide for researchers in the food industry, offering insights and recommendations to optimize the production process of bioactive peptides.
Collapse
Affiliation(s)
- Mengting Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhida Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bijun Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liu Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Sheng Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Lang Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Guangquan Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Corrêa JAF, de Melo Nazareth T, Rocha GFD, Luciano FB. Bioactive Antimicrobial Peptides from Food Proteins: Perspectives and Challenges for Controlling Foodborne Pathogens. Pathogens 2023; 12:pathogens12030477. [PMID: 36986399 PMCID: PMC10052163 DOI: 10.3390/pathogens12030477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Bioactive peptides (BAPs) derived from food proteins have been extensively studied for their health benefits, majorly exploring their potential use as nutraceuticals and functional food components. These peptides possess a range of beneficial properties, including antihypertensive, antioxidant, immunomodulatory, and antibacterial activities, and are naturally present within dietary protein sequences. To release food-grade antimicrobial peptides (AMPs), enzymatic protein hydrolysis or microbial fermentation, such as with lactic acid bacteria (LAB), can be employed. The activity of AMPs is influenced by various structural characteristics, including the amino acid composition, three-dimensional conformation, liquid charge, putative domains, and resulting hydrophobicity. This review discusses the synthesis of BAPs and AMPs, their potential for controlling foodborne pathogens, their mechanisms of action, and the challenges and prospects faced by the food industry. BAPs can regulate gut microbiota by promoting the growth of beneficial bacteria or by directly inhibiting pathogenic microorganisms. LAB-promoted hydrolysis of dietary proteins occurs naturally in both the matrix and the gastrointestinal tract. However, several obstacles must be overcome before BAPs can replace antimicrobials in food production. These include the high manufacturing costs of current technologies, limited in vivo and matrix data, and the difficulties associated with standardization and commercial-scale production.
Collapse
Affiliation(s)
- Jessica Audrey Feijó Corrêa
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Tiago de Melo Nazareth
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Giovanna Fernandes da Rocha
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Fernando Bittencourt Luciano
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| |
Collapse
|
5
|
Zhu Z, Huang R, Yao S, Liu Y, Zhang Q, Zhou X, Jiang K. An integrated process for co-producing fermentable sugars and xylonate from sugarcane bagasse based on xylonic acid assisted pretreatment. BIORESOURCE TECHNOLOGY 2023; 369:128464. [PMID: 36509308 DOI: 10.1016/j.biortech.2022.128464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
In this study, a renewable organic acid (xylonic acid), which can be prepared by the biooxidation of xylose, is used for pretreating sugarcane bagasse. The effects of reaction temperature and time on the release of fermentable xylose and glucose were investigated. On the basis of guaranteeing the good enzymatic hydrolysis efficiency and minimizing the effects of inhibitors, the pretreatment with 1 % xylnoic acid at 190 °C for 30 min was selected after optimization. In this case, 70 % xylose was released, while enzymatic hydrolysis yield was also up to 86.5 %. Meanwhile, the pretreated hydrolysate liquor was proved that it could be used for producing xylonate by biooxidation of Gluconobacter oxydans. Finally, the sequential process of the xylonic acid pretreatment and saccharification also clear the path for recycling the lignin as value-added bioproducts. Overall, this study presents a green-like strategy for fully exploiting sugarcane bagasse.
Collapse
Affiliation(s)
- Zhen Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Rong Huang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yiruo Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qibo Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China.
| |
Collapse
|
6
|
Chukwunonso Ossai I, Shahul Hamid F, Hassan A. Valorisation of keratinous wastes: A sustainable approach towards a circular economy. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 151:81-104. [PMID: 35933837 DOI: 10.1016/j.wasman.2022.07.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The valorisation of keratinous wastes involves biorefining and recovering the bioresource materials from the keratinous wastes to produce value-added keratin-based bioproducts with a broad application, distribution, and marketability potential. Valorisation of keratinous wastes increases the value of the wastes and enables more sustainable waste management towards a circular bioeconomy. The abundance of keratinous wastes as feedstock from agro-industrial processing, wool processing, and grooming industry benefits biorefinery and extraction of keratins, which could be the optimal solution for developing an ecologically and economically sustainable keratin-based economy. The transition from the current traditional linear models that are deleterious to the environment, which end energy and resources recovery through disposal by incineration and landfilling, to a more sustainable and closed-loop recycling and recovery approach that minimises pollution, disposal challenges, loss of valuable bioresources and potential revenues are required. The paper provides an overview of keratinous wastes and the compositional keratin proteins with the descriptions of the various keratin extraction methods in biorefinery and functional material synthesis, including enzymatic and microbial hydrolysis, chemical hydrolysis (acid/alkaline hydrolysis, dissolution in ionic liquids, oxidative and sulphitolysis) and chemical-free hydrolysis (steam explosion and ultrasonic). The study describes various uses and applications of keratinases and keratin-based composites fabricated through various manufacturing processes such as lyophilisation, compression moulding, solvent casting, hydrogel fabrication, sponge formation, electrospinning, and 3D printing for value-added applications.
Collapse
Affiliation(s)
- Innocent Chukwunonso Ossai
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Waste Management, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fauziah Shahul Hamid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Waste Management, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Auwalu Hassan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Waste Management, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Biological Sciences, Faculty of Science, Federal University Kashere, Gombe State, Nigeria
| |
Collapse
|