1
|
Huang T, Sage J, Técher D, Gromaire MC. Hydrological performance of bioretention in field experiments and models: A review from the perspective of design characteristics and local contexts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178684. [PMID: 39904179 DOI: 10.1016/j.scitotenv.2025.178684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/05/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Bioretention is a widely used countermeasure to address stormwater runoff issues and restore the urban water balance. This review investigated the variety of designs and local contexts covered by earlier studies, as well as the means for assessing the hydrological performance of a bioretention system. It built on the analysis of 75 documents to discuss the adequacy of experimental setups or models for the evaluation of different performance indicators, and to summarise current knowledge regarding the impact of local context or design parameters on the hydrologic functioning of bioretention systems. The current literature was found to only partially cover the potential variety of local contexts or bioretention designs, and to sometimes omit critical information. Studies were for instance concentrated in regions with low seasonal rainfall variability for which limits the potential for investigating drought resilience issues and more generally restricts the applicability of their findings to other climate conditions. Regarding bioretention design, the use of environmental-friendly materials (renewable and local materials) as alternatives to traditional materials (sand, gravel, geotextile), as well as simpler designs with limited inputs of external materials (e.g. limited use of concrete or polymeric materials), remains largely overlooked. Besides, the over representation of lined system in current studies leads to a lack of understanding of the interactions between bioretention and the surrounding soil, despite evidence of their potential impact on the overall performance of bioretention in the case of unlined systems. In the reviewed studies, certain limitations of the most commonly used monitoring and modelling methods were identified. Event-based and short-term approaches made up a large proportion of the modelling and monitoring methods, but they lead to inaccuracies in annual and long-term performance. 1D models gained popularity due to their ease of use, but the simplification of configuration and hydrological processes and thus their influence on performance was rarely discussed.
Collapse
Affiliation(s)
- Tinghao Huang
- LEESU, ENPC, Institut Polytechnique de Paris, Univ Paris Est Creteil, 77455 Marne-la-Vallée, France.
| | - Jérémie Sage
- Cerema, Equipe TEAM, 12 rue Teisserenc de Bort, 78190 Trappes, France.
| | - Didier Técher
- Cerema, Equipe TEAM, 71 rue de la Grande Haie, 54510 Tomblaine, France.
| | - Marie-Christine Gromaire
- LEESU, ENPC, Institut Polytechnique de Paris, Univ Paris Est Creteil, 77455 Marne-la-Vallée, France.
| |
Collapse
|
2
|
Addo-Bankas O, Wei T, Zhao Y, Bai X, Núñez AE, Stefanakis A. Revisiting the concept, urban practices, current advances, and future prospects of green infrastructure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176473. [PMID: 39343404 DOI: 10.1016/j.scitotenv.2024.176473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/20/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
The inevitable increase in the human population's reliance on natural resources necessitates practical, and result-oriented solutions and strategies to enhance human's standard of living while minimizing its impact on essential resources. The global water resource depletion has spurred discourse among key international stakeholder in uniting efforts to achieve sustainability. For decades, the application of a combination of key strategies which relies on designing cities to promote the sustainable use of water and water resources have received global endorsement. The roadmap towards designing water-wise infrastructure in urban areas has derived from preexisting water conservation schemes. Green infrastructure (GI) is based on the key principle of the harmonious integration of natural elements and ecological processes to sustainably conserve natural resources. This paper aims to analyze and assess the development of sustainable and effective solutions for urban water quality management, by providing a comprehensive review of the concept of GI. We further digest the components and strategies of GI, its historical evolution, the rate of adoption and application on a regional scale and future prospects. GI with continued innovation and refinement, holds immense potential to mitigate the detrimental effects of urbanization on water resources and promote sustainable urban water management.
Collapse
Affiliation(s)
- Olivia Addo-Bankas
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Ting Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China; School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Xuechen Bai
- China United Northwest Institute for Engineering Design & Research Co., Ltd., Xi'an 710077, PR China
| | - Abraham Esteve Núñez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| | - Alexandros Stefanakis
- Laboratory of Environmental Engineering & Management, School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| |
Collapse
|
3
|
Jarosiewicz P, Font-Najera A, Mankiewicz-Boczek J, Chamerska A, Amalfitano S, Fazi S, Jurczak T. Stormwater treatment in constrained urban spaces through a hybrid Sequential Sedimentation Biofiltration System. CHEMOSPHERE 2024; 367:143696. [PMID: 39510268 DOI: 10.1016/j.chemosphere.2024.143696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Urban areas face increasing pressures on water resources, necessitating innovative approaches to climate adaptation and water quality management. Nature-based Solutions (NbS) offer a sustainable pathway, yet their integration with existing infrastructure in urban settings remains occasional. This study presents a novel hybrid system-Sequential Sedimentation Biofiltration System (SSBS)-designed for stormwater treatment within confined urban spaces. The system was adjusted to the existing stormwater infrastructure by integrating a sedimentation tank (SED), three Permeable Reactive Barriers (PRBs), and a biofiltration zone (BIO). The SSBS was evaluated for its efficiency in removing nutrients and sediments, focusing on the performance of PRBs. Our findings showed limited sediment removal in SED and PRBs due to spatial constraints and a high Hydraulic Loading Rate (HLR = 1.31 m/d), achieving an average of 13.6% Total Suspended Solids (TSS) removal. However, PRBs demonstrated effective removal of ammonium (43.4%) and phosphate (59.3%), potentially due to sorption and biofilm activity, with dominant microbial communities including Proteobacteria, Bacteroidetes, and nutrient-transforming taxa such as Nitrospirae. Interestingly, PRBs increased nitrite levels (57.1%) but did not significantly impact nitrate, chloride, or TSS. The BIO zone further enhanced nutrient retention (56% PO4-P) and served as a sink for TSS (52%). This study underscores the potential for integrating traditional urban infrastructure with NbS in a sequential stormwater treatment system, demonstrating its effectiveness in space-constrained urban environments.
Collapse
Affiliation(s)
- P Jarosiewicz
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237, Lodz, Poland.
| | - A Font-Najera
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364, Lodz, Poland
| | - J Mankiewicz-Boczek
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237, Lodz, Poland
| | - A Chamerska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364, Lodz, Poland
| | - S Amalfitano
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale delle Ricerche (IRSA-CNR), Via Salaria km 29,300, 00015, Monterotondo, Roma, Italy
| | - S Fazi
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale delle Ricerche (IRSA-CNR), Via Salaria km 29,300, 00015, Monterotondo, Roma, Italy
| | - T Jurczak
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237, Lodz, Poland
| |
Collapse
|
4
|
Tiernan E, Fassman-Beck E, Lombardo N. Effects of Postprocessing Decisions on Flow-Weighted Event Mean Concentrations. JOURNAL OF SUSTAINABLE WATER IN THE BUILT ENVIRONMENT 2024; 10. [DOI: 10.1061/jswbay.sweng-552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/15/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Edward Tiernan
- Engineer, Southern California Coastal Water Research Project, 3535 Harbor Blvd., Costa Mesa, CA 92626 (corresponding author). ORCID:
| | - Elizabeth Fassman-Beck
- Engineering Department Head, Southern California Coastal Water Research Project, 3535 Harbor Blvd., Costa Mesa, CA 92626. ORCID:
| | - Nicholas Lombardo
- Data Analyst, Southern California Coastal Water Research Project, 3535 Harbor Blvd., Costa Mesa, CA 92626
| |
Collapse
|
5
|
Zhang Z, Zhang Y, Li J, Sun Y, Liu Z. Pollutant accumulation and microbial community evolution in rain gardens with different drainage types at field scale. Sci Rep 2024; 14:2. [PMID: 38228664 PMCID: PMC10792081 DOI: 10.1038/s41598-023-48255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024] Open
Abstract
Rain gardens play a key role in urban non-point source pollution control. The drainage type affects the infiltration processes of runoff pollutants. The soil properties and microbial community structures were studied to reveal the stability of the ecosystem in rain gardens with different drainage types under long-term operation. The results showed that the soil water content and total organic carbon in the drained rain gardens were always higher than that of the infiltrated ones. With the increase in running time, the contents of heavy metals in rain gardens showed significant accumulation phenomena, especially the contents of Zn and Pb in drained rain gardens were higher than that in infiltrated ones. The accumulation of pollutants resulted in lower microbial diversity in drained rain gardens than in infiltrated rain gardens, but the microbial community structures were the same in all rain gardens. The effects of drainage type on microbial community evolution were not significant, only the accumulation of heavy metals led to changes in the abundance of dominant microorganisms. There were differences in the soil environment of rain gardens with different drainage types. The long-term operation of rain gardens led to fluctuations in the soil ecosystem, while the internal micro-ecosystems of the drained rain gardens were in unstable states.
Collapse
Affiliation(s)
- Zhaoxin Zhang
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Yang Zhang
- Shaanxi Key Laboratory of Land Consolidation, Chang' an University, Xi'an, 710064, China.
| | - Jiake Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China.
| | - Yingying Sun
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China
| | - Zhe Liu
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China
| |
Collapse
|
6
|
Akpinar D, Chowdhury S, Tian J, Guo M, Barton S, Imhoff PT. Understanding a wood-derived biochar's impact on stormwater quality, plant growth, and survivability in bioretention soil mixtures. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119359. [PMID: 37871550 DOI: 10.1016/j.jenvman.2023.119359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
Bioretention systems are planted media filters used in stormwater infrastructure. Maintaining plant growth and survival is challenging because most designs require significant sand. Conventional bioretention soil media (BSM) might be augmented with biochar to make the BSM more favorable to plants, to improve nutrient removal efficiency, and enhance plant survivability during drought while replacing compost/mulch components that have been linked to excess nutrient export. Pots with BSMs representing high and moderate sand content were amended with wood biochar, planted with switchgrass, and subjected to weekly storms for 20 weeks, followed by a 10-week drought. After 20 weeks, 4% biochar amendment significantly increased stormwater infiltration (67%) and plant available water (52%) in the high sand content BSM (NC mix, which meets requirements for the state of North Carolina (US) and contains no compost/mulch), and these favorable hydraulic properties were not statistically different from a moderate sand content, biochar-free BSM with compost/mulch (DE mix, which meets requirements for state of Delaware (US)). While biochar amendment improved plant height (25%), the number of shoots (89%), and total biomass (70%) in the NC mix, these parameters were still less than those in the biochar-free DE mix containing compost/mulch. TN and NO3-1 removal were also improved (28-35%) by biochar amendment to NC mix, and the resulting TN and TP loadings to groundwater were 10 and 7 times less, respectively than biochar-free DE mix with compost/mulch. During the drought period, biochar amendment increased the time to switchgrass wilting by ∼8 days in the NC mix but remained 40% less than the biochar-free DE mix. A recalcitrant carbon-like biochar mitigates some of the deleterious effects of high sand content BSM on plants, and where nutrient pollution is a concern, replacement of compost/mulch with wood biochar in BSM may be desired.
Collapse
Affiliation(s)
- Derya Akpinar
- Department of Civil and Environmental Engineering, University of Delaware, DE, 19716, Newark, USA
| | - Sraboni Chowdhury
- Department of Civil and Environmental Engineering, University of Delaware, DE, 19716, Newark, USA; Department of Civil and Environmental Engineering, University of Iowa, IA, 52242, Iowa City, USA
| | - Jing Tian
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Mingxin Guo
- Department of Agriculture and Natural Resources, Delaware State University, DE, 19901, Dover, USA
| | - Susan Barton
- Department of Plant and Soil Sciences, University of Delaware, DE, 19716, Newark, USA
| | - Paul T Imhoff
- Department of Civil and Environmental Engineering, University of Delaware, DE, 19716, Newark, USA.
| |
Collapse
|
7
|
Li J, Culver TB, Persaud PP, Hathaway JM. Developing nitrogen removal models for stormwater bioretention systems. WATER RESEARCH 2023; 243:120381. [PMID: 37517150 DOI: 10.1016/j.watres.2023.120381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/14/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023]
Abstract
Bioretention systems have the potential of simultaneous runoff volume reduction and nitrogen removal. Internal water storage (IWS) layers and real-time control (RTC) strategies may further improve performance of bioretention systems. However, optimizing the design of these systems is limited by the lack of effective models to simulate nitrogen transformations under the influences of IWS design and environment conditions including soil moisture and temperature. In this study, nitrogen removal models (NRMs) are developed with two complexity levels of nitrogen cycling: the Single Nitrogen Pool (SP) models and the more complex 3 Nitrogen Pool (3P) models. The 0-order kinetics, 1st order kinetics, and the Michaelis-Menten equations are applied to both SP and 3P models, creating six different NRMs. The Storm Water Management Model (SWMM), in combination with each NRM, is calibrated and validated with a lab dataset. Results show that 0-order kinetics are not suitable in simulating nitrogen removal or transformations in bioretention systems, while 1st order kinetics and Michaelis-Menten equation models have similar performances. The best performing NRM (referred to as 3P-m) can accurately predict nitrogen event mean concentrations in bioretention effluent for 20% more events when compared to SWMM. When only calibrated with soil moisture conditions in bioretention systems without internal storage layers, 3P-m was sufficiently adaptable to predict cumulative nitrogen mass removal rates from systems with IWS or RTC rules with less than ±7% absolute error, while the absolute error from SWMM prediction can reach -23%. In general, 3P models provide higher prediction accuracy and improved time series of biochemical reaction rates, while SP models improve prediction accuracy with less required user input for initial conditions.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Civil and Environmental Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA, 22904, United States
| | - Teresa B Culver
- Department of Civil and Environmental Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA, 22904, United States.
| | - Padmini P Persaud
- Department of Civil and Environmental Engineering, University of Tennessee-Knoxville, 851 Neyland Dr., Knoxville, TN, 37996, United States
| | - Jon M Hathaway
- Department of Civil and Environmental Engineering, University of Tennessee-Knoxville, 851 Neyland Dr., Knoxville, TN, 37996, United States
| |
Collapse
|
8
|
Cai Z, Zhu R, Ruggier E, Newman G, Horney JA. Calculating the Environmental Impacts of Low-Impact Development Using Long-Term Hydrologic Impact Assessment: A Review of Model Applications. LAND 2023; 12:612. [PMID: 37324780 PMCID: PMC10270665 DOI: 10.3390/land12030612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Low-impact development (LID) is a planning and design strategy that addresses water quality and quantity while providing co-benefits in the urban and suburban landscape. The Long-Term Hydrologic Impact Assessment (L-THIA) model estimates runoff and pollutant loadings using simple inputs of land use, soil type, and climatic data for the watershed-scale analysis of average annual runoff based on curve number analysis. Using Scopus, Web of Science, and Google Scholar, we screened 303 articles that included the search term "L-THIA", identifying 47 where L-THIA was used as the primary research method. After review, articles were categorized on the basis of the primary purpose of the use of L-THIA, including site screening, future scenarios and long-term impacts, site planning and design, economic impacts, model verification and calibration, and broader applications including policy development or flood mitigation. A growing body of research documents the use of L-THIA models across landscapes in applications such as the simulations of pollutant loadings for land use change scenarios and the evaluation of designs and cost-effectiveness. While the existing literature demonstrates that L-THIA models are a useful tool, future directions should include more innovative applications such as intentional community engagement and a focus on equity, climate change impacts, and the return on investment and performance of LID practices to address gaps in knowledge.
Collapse
Affiliation(s)
- Zhenhang Cai
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX 77843, USA
| | - Rui Zhu
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX 77843, USA
| | - Emma Ruggier
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Galen Newman
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
9
|
Sheoran K, Siwal SS, Kapoor D, Singh N, Saini AK, Alsanie WF, Thakur VK. Air Pollutants Removal Using Biofiltration Technique: A Challenge at the Frontiers of Sustainable Environment. ACS ENGINEERING AU 2022; 2:378-396. [PMID: 36281334 PMCID: PMC9585892 DOI: 10.1021/acsengineeringau.2c00020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Air pollution is a central problem faced by industries during the production process. The control of this pollution is essential for the environment and living organisms as it creates harmful effects. Biofiltration is a current pollution management strategy that concerns removing odor, volatile organic compounds (VOCs), and other pollutants from the air. Recently, this approach has earned vogue globally due to its low-cost and straightforward technique, effortless function, high reduction efficacy, less energy necessity, and residual consequences not needing additional remedy. There is a critical requirement to consider sustainable machinery to decrease the pollutants arising within air and water sources. For managing these different kinds of pollutant reductions, biofiltration techniques have been utilized. The contaminants are adsorbed upon the medium exterior and are metabolized to benign outcomes through immobilized microbes. Biofiltration-based designs have appeared advantageous in terminating dangerous pollutants from wastewater or contaminated air in recent years. Biofiltration uses the possibilities of microbial approaches (bacteria and fungi) to lessen the broad range of compounds and VOCs. In this review, we have discussed a general introduction based on biofiltration and the classification of air pollutants based on different sources. The history of biofiltration and other mechanisms used in biofiltration techniques have been discussed. Further, the crucial factors of biofilters that affect the performance of biofiltration techniques have been discussed in detail. Finally, we concluded the topic with current challenges and future prospects.
Collapse
Affiliation(s)
- Karamveer Sheoran
- Department
of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Samarjeet Singh Siwal
- Department
of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Deepanshi Kapoor
- Department
of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Nirankar Singh
- Department
of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Adesh K. Saini
- Department
of Biotechnology, Maharishi Markandeshwar
(Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Walaa Fahad Alsanie
- Department
of Clinical Laboratories Sciences, The Faculty of Applied Medical
Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
- Centre for
Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| |
Collapse
|