1
|
Soyluoglu M, Kim D, Karanfil T. Characteristics and Stability of Ozone Nanobubbles in Freshwater Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21898-21907. [PMID: 38085154 DOI: 10.1021/acs.est.3c07443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The characteristics and stability of ozone nanobubbles (NBs) were investigated for the first time under different preparation conditions and freshwater conditions (i.e., pH, natural organic matter [NOM], carbonate, calcium, and temperature) for an extended period. Two oxygen gas flow rates (4 and 1 L/min) used in ozone NB generation affected the characteristics and stability of ozone NBs. The ozone NBs generated at a high initial dissolved ozone (12.5 mg/L) concentration showed a much higher brightness during measurements than the ozone NBs generated at a low initial dissolved ozone concentration (1 mg/L). The former also exhibited a higher negative surface charge and higher stability in comparison to the latter. The stability and half-lives of ozone NBs followed the order of 3 mM Ca2+ < pH 3 < NOM with high specific ultraviolet absorbance at 254 nm (SUVA254 = 4.1 L/mg·m) < pH 7 < pH 9, while the effects of carbonate and temperature were insignificant. Ozone NBs were relatively stable in waters for a long period (e.g., ≥ 60 days) except for high hardness or low pH conditions. Higher levels of hydroxyl radicals were produced from ozone NB solutions as compared to conventional ozonation.
Collapse
Affiliation(s)
- Meryem Soyluoglu
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina 29625, United States
| | - Daekyun Kim
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina 29625, United States
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina 29625, United States
| |
Collapse
|
2
|
Yuan X, Sun Y, Ni D, Xie Z, Zhang Y, Miao S, Wu L, Xing X, Zuo J. A biological strategy for sulfide control in sewers: Removing sulfide by sulfur-oxidizing bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119237. [PMID: 37832290 DOI: 10.1016/j.jenvman.2023.119237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Sulfide produced from sewers is considered one of the dominant threats to public health and sewer lifespan due to its toxicity and corrosiveness. In this study, we developed an environmentally friendly strategy for gaseous sulfide control by enriching indigenous sulfur-oxidizing bacteria (SOB) from sewer sediment. Ceramics acted as bio-carriers for immobilizing SOB for practical use in a lab-scale sewer reactor. 16 S rRNA gene sequences revealed that the SOB consortium was successfully enriched, with Thiobacillus, Pseudomonas, and Alcaligenes occupying a dominant abundance of 64.7% in the microbial community. Metabolic pathway analysis in different acclimatization stages indicates that microorganisms could convert thiosulfate and sulfide into elemental sulfur after enrichment and immobilization. A continuous experiment in lab-scale sewer reactors confirmed an efficient result for sulfide removal with hydrogen sulfide reduction of 43.9% and 85.1% under high-sulfur load and low-sulfur load conditions, respectively. This study shed light on the promising application for sewer sulfide control by biological sulfur oxidation strategy.
Collapse
Affiliation(s)
- Xin Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute of Highway Ministry of Transport, Beijing 100088, China
| | - Yiquan Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dong Ni
- Research Institute of Highway Ministry of Transport, Beijing 100088, China
| | - Zhenwen Xie
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanyan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Sun Miao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Linjun Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xin Xing
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute of Highway Ministry of Transport, Beijing 100088, China.
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
3
|
Li T, Cui Z, Sun J, Li Q, Wang Y, Li G. Oxidative Capacity of Oxygen Nanobubbles and Their Mechanism for the Catalytic Oxidation of Ferrous Ions with Copper as a Catalyst in Sulfuric Acid Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37452782 DOI: 10.1021/acs.langmuir.3c01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Nanobubble (NB) technology has demonstrated the potential to enhance or substitute for current treatment processes in various areas. However, research employing it as a novel advanced oxidation process has thus far been relatively limited. Herein, we focused on the oxidative capacity of oxygen NBs and investigated the feasibility of utilizing their enhanced oxidation of ferrous ions (Fe2+) in a sulfuric acid medium when using copper as a catalyst and their effect mechanism. It was demonstrated that oxygen NBs could collapse to produce hydroxyl radicals (·OH) in the absence of dynamic stimuli using electron spin resonance spectroscopy, and methylene blue was used as a molecular probe for ·OH to illustrate that NB stability, determined by their properties, is the critical factor affecting ·OH release. In subsequent Fe2+ oxidation experiments, it was discovered that both strong acidity and copper ions (Cu2+) contribute to accelerating the collapse of NBs to produce ·OH. While ·OH derived from the collapse of NBs acts on Fe2+, the molecular oxygen generated homologously with ·OH will further activate the catalytic oxidation of Fe2+ by interacting with Cu2+. With the synergistic effect of the above two oxidation-driven mechanisms, the oxidation rate of Fe2+ can be significantly increased up to 88% due to the exceptional properties of oxygen NBs, which facilitate the formation of an atmosphere with persistent oxygen supersaturation and the generation of oxidation radicals. This study provides significant insight into applying NBs as a prospective technology for enhanced oxidation processes.
Collapse
Affiliation(s)
- Ting Li
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhao Cui
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Jing Sun
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qian Li
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Yongdong Wang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Guangyue Li
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
4
|
Cheng Y, Zhang X, Du X, Yang F, Hu B, Xiao S, Zeng M. Microstructural changes in limestone after treatment with Na2CO3 solution: Implications for eliminating H2S in tunnels. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|