1
|
Diamanti C, Nousis L, Bozidis P, Koureas M, Kyritsi M, Markozannes G, Simantiris N, Panteli E, Koutsolioutsou A, Tsilidis K, Hadjichristodoulou C, Koutsotoli A, Christaki E, Alivertis D, Bartzokas A, Gartzonika K, Dovas C, Ntzani E. Wastewater Surveillance of SARS-CoV-2: A Comparison of Two Concentration Methods. Viruses 2024; 16:1398. [PMID: 39339875 PMCID: PMC11436116 DOI: 10.3390/v16091398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Wastewater surveillance is crucial for the epidemiological monitoring of SARS-CoV-2. Various concentration techniques, such as skimmed milk flocculation (SMF) and polyethylene glycol (PEG) precipitation, are employed to isolate the virus effectively. This study aims to compare these two methods and determine the one with the superior recovery rates. From February to December 2021, 24-h wastewater samples were collected from the Ioannina Wastewater Treatment Plant's inlet and processed using both techniques. Subsequent viral genome isolation and a real-time RT-qPCR detection of SARS-CoV-2 were performed. The quantitative analysis demonstrated a higher detection sensitivity with a PEG-based concentration than SMF. Moreover, when the samples were positive by both methods, PEG consistently yielded higher viral loads. These findings underscore the need for further research into concentration methodologies and the development of precise protocols to enhance epidemiological surveillance through wastewater analysis.
Collapse
Affiliation(s)
- Christina Diamanti
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece; (C.D.); (L.N.); (G.M.); (N.S.); (E.P.); (K.T.); (A.K.)
| | - Lambros Nousis
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece; (C.D.); (L.N.); (G.M.); (N.S.); (E.P.); (K.T.); (A.K.)
| | - Petros Bozidis
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (P.B.); (K.G.)
| | - Michalis Koureas
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Str., 41222 Larissa, Greece; (M.K.); (M.K.); (C.H.)
| | - Maria Kyritsi
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Str., 41222 Larissa, Greece; (M.K.); (M.K.); (C.H.)
| | - George Markozannes
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece; (C.D.); (L.N.); (G.M.); (N.S.); (E.P.); (K.T.); (A.K.)
| | - Nikolaos Simantiris
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece; (C.D.); (L.N.); (G.M.); (N.S.); (E.P.); (K.T.); (A.K.)
| | - Eirini Panteli
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece; (C.D.); (L.N.); (G.M.); (N.S.); (E.P.); (K.T.); (A.K.)
| | | | - Konstantinos Tsilidis
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece; (C.D.); (L.N.); (G.M.); (N.S.); (E.P.); (K.T.); (A.K.)
| | - Christos Hadjichristodoulou
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Str., 41222 Larissa, Greece; (M.K.); (M.K.); (C.H.)
- National Public Health Organization, 15123 Athens, Greece;
| | - Alexandra Koutsotoli
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece; (C.D.); (L.N.); (G.M.); (N.S.); (E.P.); (K.T.); (A.K.)
| | - Eirini Christaki
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45500 Ioannina, Greece;
| | - Dimitrios Alivertis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina 45110, Greece;
| | - Aristides Bartzokas
- Laboratory of Meteorology, Department of Physics, University of Ioannina, Ioannina, Greece;
| | - Konstantina Gartzonika
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (P.B.); (K.G.)
| | - Chrysostomos Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece;
| | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece; (C.D.); (L.N.); (G.M.); (N.S.); (E.P.); (K.T.); (A.K.)
- Center for Evidence Synthesis in Health, Department of Health Services, Policy and Practice, School of Public Health, Brown University, Providence, RI 02912, USA
- Biomedical Research Institute, Foundation for Research and Technology, 45110 Ioannina, Greece
| |
Collapse
|
2
|
Tandukar S, Thakali O, Baral R, Tiwari A, Haramoto E, Tuladhar R, Joshi DR, Sherchan SP. Application of wastewater-based epidemiology for monitoring COVID-19 in hospital and housing wastewaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:171877. [PMID: 38531458 DOI: 10.1016/j.scitotenv.2024.171877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
An alternative and complementary diagnostic method of surveillance is provided by wastewater-based surveillance (WBS), particularly in low-income nations like Nepal with scant wastewater treatment facilities and clinical testing infrastructure. In this study, a total of 146 water samples collected from two hospitals (n = 63) and three housing wastewaters (n = 83) from the Kathmandu Valley over the period of March 2021-Febraury 2022 were investigated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using quantitative reverse transcription TaqMan PCR assays targeting the N and E genes. Of the total, 67 % (98/146) samples were positive for SARS-CoV-2 RNA either by using N- or E-gene assay, with concentrations ranging from 3.6 to 9.1 log10 copies/L. There was a significant difference found between positive ratio (Chi-square test, p < 0.05) and concentration (t-test, p = 0.009) of SARS-CoV-2 RNA detected from hospital wastewater and housing waters. Wastewater data are correlated with COVID-19 active cases, indicating significance in specific areas like the Hospital (APFH) (p < 0.05). According to the application of a bivariate linear regression model (p < 0.05), the concentrations of N gene may be used to predict the COVID-19 cases in the APFH. Remarkably, SARS-CoV-2 RNA was detected prior to, during, and following clinical case surges, implying that wastewater surveillance could serve as an early warning system for public health decisions. The significance of WBS in tracking and managing pandemics is emphasized by this study, especially in resource-constrained settings.
Collapse
Affiliation(s)
- Sarmila Tandukar
- Organization for Public Health and Environment Management, Lalitpur, Nepal
| | - Ocean Thakali
- Organization for Public Health and Environment Management, Lalitpur, Nepal
| | - Rakshya Baral
- Center of Research Excellence in Wastewater based Epidemiology, Morgan State University, Baltimore, MD 21251, United States of America
| | - Ananda Tiwari
- Expert Microbiology Research Unit, Finnish Institute for Health and Welfare, Kuopio 70701, Finland
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Reshma Tuladhar
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Samendra P Sherchan
- Organization for Public Health and Environment Management, Lalitpur, Nepal; Center of Research Excellence in Wastewater based Epidemiology, Morgan State University, Baltimore, MD 21251, United States of America; Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan; Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal; Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, United States of America.
| |
Collapse
|
3
|
El Soufi G, Di Jorio L, Gerber Z, Cluzel N, Van Assche J, Delafoy D, Olaso R, Daviaud C, Loustau T, Schwartz C, Trebouet D, Hernalsteens O, Marechal V, Raffestin S, Rousset D, Van Lint C, Deleuze JF, Boni M, Rohr O, Villain-Gambier M, Wallet C. Highly efficient and sensitive membrane-based concentration process allows quantification, surveillance, and sequencing of viruses in large volumes of wastewater. WATER RESEARCH 2024; 249:120959. [PMID: 38070350 DOI: 10.1016/j.watres.2023.120959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Wastewater-based epidemiology is experiencing exponential development. Despite undeniable advantages compared to patient-centered approaches (cost, anonymity, survey of large populations without bias, detection of asymptomatic infected peoples…), major technical limitations persist. Among them is the low sensitivity of the current methods used for quantifying and sequencing viral genomes from wastewater. In situations of low viral circulation, during initial stages of viral emergences, or in areas experiencing heavy rains, the extremely low concentrations of viruses in wastewater may fall below the limit of detection of the current methods. The availability during crisis and the cost of the commercial kits, as well as the requirement of expensive materials such as high-speed centrifuge, can also present major blocks to the development of wastewater-based epidemiological survey, specifically in low-income countries. Thereby, highly sensitive, low cost and standardized methods are still needed, to increase the predictability of the viral emergences, to survey low-circulating viruses and to make the results from different labs comparable. Here, we outline and characterize new protocols for concentrating and quantifying SARS-CoV-2 from large volumes (500 mL-1 L) of untreated wastewater. In addition, we report that the methods are applicable for monitoring and sequencing. Our nucleic acid extraction technique (the routine C: 5 mL method) does not require sophisticated equipment such as automatons and is not reliant on commercial kits, making it readily available to a broader range of laboratories for routine epidemiological survey. Furthermore, we demonstrate the efficiency, the repeatability, and the high sensitivity of a new membrane-based concentration method (MBC: 500 mL method) for enveloped (SARS-CoV-2) and non-enveloped (F-specific RNA phages of genogroup II / FRNAPH GGII) viruses. We show that the MBC method allows the quantification and the monitoring of viruses in wastewater with a significantly improved sensitivity compared to the routine C method. In contexts of low viral circulation, we report quantifications of SARS-CoV-2 in wastewater at concentrations as low as 40 genome copies per liter. In highly diluted samples collected in wastewater treatment plants of French Guiana, we confirmed the accuracy of the MBC method compared to the estimations done with the routine C method. Finally, we demonstrate that both the routine C method processing 5 mL and the MBC method processing 500 mL of untreated wastewater are both compatible with SARS-CoV-2 sequencing. We show that the quality of the sequence is correlated with the concentration of the extracted viral genome. Of note, the quality of the sequences obtained with some MBC processed wastewater was improved by dilutions or enzyme substitutions suggesting the presence of specific enzyme inhibitors in some wastewater. To the best of our knowledge, our MBC method is one of the first efficient, sensitive, and repeatable method characterized for SARS-CoV-2 quantification and sequencing from large volumes of wastewater.
Collapse
Affiliation(s)
- G El Soufi
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France; CNRS, IPHC, UMR 7178, Université de Strasbourg, Strasbourg F-67000, France
| | - L Di Jorio
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France
| | - Z Gerber
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry 91057, France
| | - N Cluzel
- Maison des Modélisations Ingénieries et Technologies (SUMMIT), Sorbonne Université, Paris 75005, France
| | - J Van Assche
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France
| | - D Delafoy
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry 91057, France
| | - R Olaso
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry 91057, France
| | - C Daviaud
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry 91057, France
| | - T Loustau
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France
| | - C Schwartz
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France
| | - D Trebouet
- CNRS, IPHC, UMR 7178, Université de Strasbourg, Strasbourg F-67000, France
| | - O Hernalsteens
- Department of Molecular Biology (DBM), Service of Molecular Virology, Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - V Marechal
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris 75012, France; OBEPINE Consortium, Paris, France
| | - S Raffestin
- Institut Pasteur de la Guyane, French Guiana, Cayenne 97300, France; OBEPINE Consortium, Paris, France
| | - D Rousset
- Institut Pasteur de la Guyane, French Guiana, Cayenne 97300, France; OBEPINE Consortium, Paris, France
| | - C Van Lint
- Department of Molecular Biology (DBM), Service of Molecular Virology, Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - J F Deleuze
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry 91057, France
| | - M Boni
- French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; OBEPINE Consortium, Paris, France
| | - O Rohr
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France; OBEPINE Consortium, Paris, France.
| | - M Villain-Gambier
- CNRS, IPHC, UMR 7178, Université de Strasbourg, Strasbourg F-67000, France
| | - C Wallet
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France; OBEPINE Consortium, Paris, France
| |
Collapse
|
4
|
Ribeiro AVC, Mannarino CF, de Castro ESG, Prado T, Ferreira FC, Fumian TM, Miagostovich MP. Assessment of virus concentration methods for detecting SARS-CoV-2 IN wastewater. Braz J Microbiol 2023; 54:965-973. [PMID: 36877444 PMCID: PMC9987392 DOI: 10.1007/s42770-023-00941-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/24/2023] [Indexed: 03/07/2023] Open
Abstract
Wastewater-based epidemiology has been described as a valuable tool for monitoring the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a community. However, there is no consensus on the best concentration method to allow reliable detection of SARS-CoV-2 in this matrix, considering different laboratory facilities. This study compares two viral concentration methods, ultracentrifugation (ULT) and skimmed-milk flocculation (SMF), for detecting SARS-CoV-2 in wastewater samples. The analytical sensitivity (limits of detection and quantification [LoD/LoQ]) of both methods was evaluated using a bovine respiratory syncytial virus (BRSV) as a surrogate. Three different approaches were conducted to establish LoD of each method based on the assays on the standard curve (ALoDsc), on the dilution of internal control (ALoDiC), and the processing steps (PLoD). For PLoD, ULT method had the lowest value (1.86 × 103 genome copy/microliter [GC/µL]) when compared to the SMF method (1.26 × 107 GC/µL). The LoQ determination showed a mean value of 1.55 × 105 GC/µL and 3.56 × 108 GC/µL to ULT and SMF, respectively. The detection of SARSCoV-2 in naturally contaminated wastewater revealed 100% (12/12) and 25% (3/12) of detection using ULT and SMF with quantification ranging from 5.2 to 7.2 log10 genome copy/liter (GC/L) and 5.06 to 5.46 log10 GC/L, respectively. The detection success rate of BRSV used as an internal control process was 100% (12/12) for ULT and 67% (8/12) for SMF, with an efficiency recovery rate ranging from 12 to 38% and 0.1 to 5%, respectively. Our data consolidates the importance of assessing the methods used; however, further analysis should be carried out to improve low-cost concentration methodologies, essential for use in low-income and developing countries.
Collapse
Affiliation(s)
- André V C Ribeiro
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, CEP 21040-360, Brazil.
| | - Camille F Mannarino
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, CEP 21040-360, Brazil
| | - Eduardo S G de Castro
- Federal Institute of Education, Science and Technology of Rio de Janeiro, IFRJ, Rua Lúcio Tavares Senador Furtado Street, 1045, Nilópolis, Rio de Janeiro, CEP 26530-06020270-021, Brazil
| | - Tatiana Prado
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, CEP 21040-360, Brazil
| | - Fernando C Ferreira
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, CEP 21040-360, Brazil
| | - Tulio M Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, CEP 21040-360, Brazil
| | - Marize P Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, CEP 21040-360, Brazil
| |
Collapse
|
5
|
Lanzarini NM, Mannarino CF, Ribeiro AVC, Prado T, Vahia LS, Siqueira MM, Resende PC, Quintaes BR, Miagostovich MP. SARS-CoV-2 surveillance-based on municipal solid waste leachate in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67368-67377. [PMID: 37101215 PMCID: PMC10132925 DOI: 10.1007/s11356-023-27019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/10/2023] [Indexed: 05/25/2023]
Abstract
Municipal solid waste leachate-based epidemiology is an alternative viral tracking tool that applies fresh truck leachate as an early warning of public health emergencies. This study aimed to investigate the potential of SARS-CoV-2 surveillance based on solid waste fresh truck leachate. Twenty truck leachate samples were ultracentrifugated, nucleic acid extracted, and real-time RT-qPCR SARS-CoV-2 N1/N2 applied. Viral isolation, variant of concern (N1/N2) inference, and whole genome sequencing were also performed. SARS-CoV-2 was detected on 40% (8/20) of samples, with a concentration from 2.89 to 6.96 RNA Log10 100 mL-1. The attempt to isolate SARS-CoV-2 and recover the whole genome was not successful; however, positive samples were characterized as possible pre-variant of concern (pre-VOC), VOC Alpha (B.1.1.7) and variant of interest Zeta (P.2). This approach revealed an alternative tool to infer SARS-CoV-2 in the environment and may help the management of local surveillance, health, and social policies.
Collapse
Affiliation(s)
- Natália Maria Lanzarini
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil.
| | - Camille Ferreira Mannarino
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - André Vinicius Costa Ribeiro
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Tatiana Prado
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Leonardo Saboia Vahia
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Marilda Mendonça Siqueira
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Paola Cristina Resende
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | | | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| |
Collapse
|
6
|
West NW, Vasquez AA, Bahmani A, Khan MF, Hartrick J, Turner CL, Shuster W, Ram JL. Sensitive detection of SARS-CoV-2 molecular markers in urban community sewersheds using automated viral RNA purification and digital droplet PCR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157547. [PMID: 35872187 PMCID: PMC9303066 DOI: 10.1016/j.scitotenv.2022.157547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Wastewater based epidemiology (WBE) has emerged as a strategy to identify, locate, and manage outbreaks of COVID-19, and thereby possibly prevent surges in cases, which overwhelm local to global health care networks. The WBE process is based on assaying municipal wastewater for molecular markers of the SARS-CoV-2 virus. Standard processes for purifying viral RNA from municipal wastewater are often time-consuming and require the handling of large quantities of wastewater, negatively affecting throughput, timely reporting, and safety. We demonstrate here an automated, faster system to purify viral RNA from smaller volumes of wastewater but with increased sensitivity for detection of SARS-CoV-2 markers. We document the effectiveness of this new approach by way of comparison to the PEG/NaCl/Qiagen method prescribed by the State of Michigan for SARS-CoV-2 wastewater monitoring and show its application to several Detroit sewersheds. Specifically, compared to the PEG/NaCl/Qiagen method, viral RNA purification using the PerkinElmer Chemagic™ 360 lowered handling time, decreased the amount of wastewater required by ten-fold, increased the amount of RNA isolated per μl of final elution product by approximately five-fold, and effectively removed ddPCR inhibitors from most sewershed samples. For detection of markers on the borderline of viral detectability, we found that use of the Chemagic™ 360 enabled the measurement of viral markers in a significant number of samples for which the result with the PEG/NaCl/Qiagen method was below the level of detectability. The improvement in detectability of the viral markers might be particularly important for early warning to public health authorities at the beginning of an outbreak. Applied to sewersheds in Detroit, the technique enabled more sensitive detection of SARS-CoV-2 markers with good correlation between wastewater signals and COVID-19 cases in the sewersheds. We also discuss advantages and disadvantages of several automated RNA purification systems, made by Promega, PerkinElmer, and ThermoFisher.
Collapse
Affiliation(s)
- Nicholas W West
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Adrian A Vasquez
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Azadeh Bahmani
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mohammed F Khan
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | - William Shuster
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Jeffrey L Ram
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
7
|
Vinasse odyssey: sugarcane vinasse remediation and laccase production by Trametes sp. immobilized in polyurethane foam. Biodegradation 2022; 33:333-348. [PMID: 35524898 DOI: 10.1007/s10532-022-09985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 04/13/2022] [Indexed: 11/02/2022]
Abstract
Vinasse is a high pollutant liquid residue from bioethanol production. Due to its toxicity, most vinasse is used not disposed of in water bodies but employed for the fertigation of sugarcane crops, potentially leading to soil salinization or heavy metal deposition. The anaerobic digestion of vinasse for energy production is the main alternative to fertigation, but the process cannot eliminate colored compounds such as melanoidins, caramels, or phenolic compounds. The treatment of raw vinasse with white-rot fungi could remove colored and persistent toxic compounds, but is generally considered cost-ineffective. We report the treatment of vinasse by an autochthonous Trametes sp. strain immobilized in polyurethane foam and the concomitant production of high titers of laccase, a high value-added product that could improve the viability of the process. The reuse of the immobilized biomass and the discoloration of raw vinasse, the concentration of phenolic compounds, BOD and COD, and the phytotoxicity of the treated vinasse were measured to assess the viability of the process and the potential use of treated vinasse in fertigation or as a complementary treatment to anaerobic digestion. Under optimal conditions (vinasse 0.25X, 30 °C, 21 days incubation, 2% glucose added in the implantation stage), immobilized Trametes sp. causes a decrease of 75% in vinasse color and total phenolic compounds, reaching 1082 U L-1 of laccase. The fungi could be used to treat 0.50X vinasse (BOD 44,400 mg O2 L-1), causing a 26% decolorization and a 30% removal of phenolic compounds after 21 days of treatment with maximum laccase titers of 112 U L-1, while reducing COD and BOD from 103,290 to 42,500 mg O2 L-1 (59%) and from 44,440 to 21,230 mg O2 L-1 (52%), respectively. The re-utilization of immobilized biomass to treat 0.50X vinasse proved to be successful, leading to the production of 361 U L-1 of laccase with 77% decolorization, 61% degradation of phenolic compounds, and the reduction of COD and BOD by 75% and 80%, respectively. Trametes sp. also reduced vinasse phytotoxicity to Lactuca sativa seedlings. The obtained results show that the aerobic treatment of vinasse by immobilized Trametes sp. is an interesting technology that could be employed as a sole treatment for the bioremediation of vinasse, with the concomitant the production of laccase. Alternatively, the methodology could be used in combination with anaerobic digestion to achieve greater decolorization and reduction of phenolic compounds, melanoidins, and organic load.
Collapse
|