1
|
Awasthi MK, Amobonye A, Bhagwat P, Ashokkumar V, Gowd SC, Dregulo AM, Rajendran K, Flora G, Kumar V, Pillai S, Zhang Z, Sindhu R, Taherzadeh MJ. Biochemical engineering for elemental sulfur from flue gases through multi-enzymatic based approaches - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169857. [PMID: 38190912 DOI: 10.1016/j.scitotenv.2023.169857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
Flue gases are the gases which are produced from industries related to chemical manufacturing, petrol refineries, power plants and ore processing plants. Along with other pollutants, sulfur present in the flue gas is detrimental to the environment. Therefore, environmentalists are concerned about its removal and recovery of resources from flue gases due to its activation ability in the atmosphere to transform into toxic substances. This review is aimed at a critical assessment of the techniques developed for resource recovery from flue gases. The manuscript discusses various bioreactors used in resource recovery such as hollow fibre membrane reactor, rotating biological contractor, sequential batch reactor, fluidized bed reactor, entrapped cell bioreactor and hybrid reactors. In conclusion, this manuscript provides a comprehensive analysis of the potential of thermotolerant and thermophilic microbes in sulfur removal. Additionally, it evaluates the efficacy of a multi-enzyme engineered bioreactor in this process. Furthermore, the study introduces a groundbreaking sustainable model for elemental sulfur recovery, offering promising prospects for environmentally-friendly and economically viable sulfur removal techniques in various industrial applications.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Ayodeji Amobonye
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban 4000, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban 4000, South Africa
| | - Veeramuthu Ashokkumar
- Center for Waste Management and Renewable Energy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Sarath C Gowd
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University, Andhra Pradesh, India
| | - Andrei Mikhailovich Dregulo
- National Research University "Higher School of Economics", 17 Promyshlennaya str, 198095, Saint-Petersburg, Russia
| | - Karthik Rajendran
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University, Andhra Pradesh, India
| | - G Flora
- Department of Botany, St. Mary's College (Autonomous), Tamil Nadu, India
| | - Vinay Kumar
- Bioconversion and Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam-602105, India
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban 4000, South Africa
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | | |
Collapse
|
2
|
Lin X, Ma C, Wu D. New insight into the enhanced ozonation of malodorous compounds by Cu(II): Inhibiting the formation of free radicals to promote ozone utilization. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130190. [PMID: 36265383 DOI: 10.1016/j.jhazmat.2022.130190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Metal-enhanced ozonation can greatly improve the decay of organic matter; however, whether this method benefits the decay of malodorous compounds or not and the possible mechanism are not well understood. In this study, nine typical malodorous compounds were selected to reveal that Cu(II)-enhanced ozonation can greatly promote the decay of fatty amines because of the direct ozone oxidation, which was enhanced to promote ozone utilization. Moreover, trace Cu(II) can amplify the observed rate constants of dimethylamine and trimethylamine for 48.9% and 155.7%, respectively, and Cu(II) dosage was the determining factor using response surface methodology to investigate the interactions between initial pH, Cu(II) dosage and ozone dosage. These results demonstrated that the formation of •OH and O2•- was inhibited rather than promoted, which was quite different from some previously reported Cu(II)-enhanced ozonation counterparts. Moreover, the enhanced effect of trace Cu(II) was exhibited in both single and complex malodorous compounds. The conversion pathway of nitrogen and sulfur elements was clarified, with the targeted mineralization of nitrogen of nitrogen-containing malodorous compounds into NO3-N and the odor characteristics of sulfur-containing malodorous compounds disappeared. These findings provided new insight for utilizing metal ions to enhance the direct ozone oxidation capacity of malodorous compounds.
Collapse
Affiliation(s)
- Xiaoqing Lin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Canming Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|