1
|
Ding S, Zhang T, Fan B, Fan B, Yin J, Chen S, Zhang S, Chen Q. Enhanced phosphorus fixation in red mud-amended acidic soil subjected to periodic flooding-drying and straw incorporation. ENVIRONMENTAL RESEARCH 2023; 229:115960. [PMID: 37116675 DOI: 10.1016/j.envres.2023.115960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
Globally, red mud is a solid waste from the aluminum industry, which is rich in iron oxides. It is an effective soil amendment in agriculture that protects connected waters from legacy diffuse phosphorus (P) soil losses. However, other management practices such as flooding and drying and/or organic carbon inputs could potentially alter P fixation in these red mud-amended soils thereby releasing P to waters. The present study was designed and conducted to monitor the mobilization of P in a red mud-amended acidic soil subjected to periodic flooding-drying, straw incorporation, and a mix of both management practices. Sequential extraction and K edge X-ray absorption near-edge structure spectroscopy (k-XANES) were employed to distinguish P fractions/species and the Langmuir model was fitted to evaluate soil P sorption capacity. The content of labile P indicated by CaCl2-P was increased significantly by 101% and 28.7% in the straw incorporation and periodic flooding-drying treatments, while it decreased significantly by 22.3% in the combined periodic flooding-drying with straw incorporation treatment, compared with Control. The inherent phosphate contained in sorghum straw, and the enhanced iron (Fe) reduction and dissolution of Calcium (Ca)-bound P induced by straw addition contributed to mobilization of P in the straw incorporation treatment. In contrast, the increased poorly crystalline Al/Fe oxides-bound P and occluded Fe-bound P fraction in the combined periodic flooding-drying with straw incorporation treatment explains the decrease in CaCl2-P. Furthermore, the increased soil P sorption capacity and the decreased P desorption rate were also responsible for the reduced P loss risk in the treatment. The results of structural equation modelling (SEM) indicated that organically complexed Fe and Fe-bound P were directly affecting P mobilization in the amended soil. Overall, the present study shows that appropriate flooding-drying events coupled with straw incorporation could be a mitigation practice for stabilizing P in red mud-amended soil. However, before it can be applied on a wide scale, multi-point and field trials should be carried out to further evaluate actual environmental implications.
Collapse
Affiliation(s)
- Shuai Ding
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Tiantian Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Beibei Fan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, PR China
| | - Bingqian Fan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Junhui Yin
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Shuo Chen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Shuai Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China.
| | - Qing Chen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| |
Collapse
|
2
|
Liu Y, Tan Y, Liang D, Pei C, Zhang Z. Effects of Sugarcane Leaf Return and Fertilizer Reduction on Maize Growth, Yield and Soil Properties in Red Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:1029. [PMID: 36903890 PMCID: PMC10004792 DOI: 10.3390/plants12051029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In order to make better use of the vast sugarcane leaf straw resources and reduce the overuse of chemical fertilizers in the subtropical red soil region of Guangxi, this study aimed to determine the effects of sugarcane leaf return (SLR) and fertilizer reduction (FR) on maize growth, yield component and yield, and soil properties. A pot experiment with three SLR amounts (full SLR (FS), 120 g/pot; half SLR (HS), 60 g/pot; and no SLR (NS) with three FR levels including full fertilizer (FF), 4.50 g N/pot, 3.00 g P2O5/pot, and 4.50 g K2O/pot; half fertilizer (HF), 2.25 g N/pot, 1.50 g P2O5/pot, and 2.25 g K2O/pot; and no fertilizer (NF)), without nitrogen, phosphorous, and potassium added, was conducted to assess the effects of different SLR amounts and chemical FR levels on maize growth, yield, and soil properties. Compared with no sugarcane leaf return and the no-fertilizer treatment (CK), SLR and FR could increase maize plant height, stalk diameter, number of fully developed maize plant leaves, total leaf area and chlorophyll content, soil alkali-hydrolyzable nitrogen (AN), available phosphorus (AP), available potassium (AK), soil organic matter (SOM), and electrical conductivity (EC). The maize yield component factors of FS and HS were higher in NF treatment than those in NS treatment. The relative increase rate of treatments retained FF/NF and HF/NF under FS or HS condition on 1000 kernel weight, ear diameter, plant air-dried weight, ear height, and yield than that under NS condition. FSHF had not only the largest plant air-dried weight but also the highest maize yield (3225.08 kg/hm2) among nine treatment combinations. The effects of SLR on maize growth and yield and soil properties were lower than those of FR. SLR and FR combined treatment did not affect maize growth but affected maize yield significantly. Soil properties improved more with SLR + FR treatment than with SLR or FR application alone. The plant height, stalk diameter, number of fully developed maize plant leaves, and total leaf area, as well as AN, AP, AK, SOM, and EC levels in soil, were enhanced by SLR and FR incorporation. The experimental results indicated that applying reasonable FR combined with SLR increased AN, AP, AK, SOM, and EC, which improved maize growth and yield and enhanced soil properties in red soil. Hence, FSHF might be a suitable combination of SLR and FR.
Collapse
Affiliation(s)
- Yufeng Liu
- Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530007, China
| | - Yumo Tan
- Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530007, China
| | - Dan Liang
- Guangxi Vocational College of Water Resources and Electric Power, Nanning 530023, China
| | - Chengruo Pei
- Guangxi Vocational College of Water Resources and Electric Power, Nanning 530023, China
| | - Zhenhua Zhang
- Institute of Jiangsu Coastal Agricultural Sciences, Yancheng 224002, China
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
3
|
Chu X, Bai N, Zheng X, Wang Q, Pan X, Li S, Zhang J, Zhang H, He W, Zhong F, Lv W, Zhang H. Effects of straw returning combined with earthworm addition on nitrification and ammonia oxidizers in paddy soil. Front Microbiol 2022; 13:1069554. [PMID: 36590424 PMCID: PMC9800607 DOI: 10.3389/fmicb.2022.1069554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Soil ammonia oxidation, which acts as the first and rate-limiting step of nitrification, is driven by ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and complete ammonia oxidizer (comammox, amoA gene of clade-A and clade-B). Straw returning, widely used ecological technology in China, is an effective measure for promoting straw decomposition and soil nutrient cycling when combined with earthworm addition. However, the effects of straw returning combined with earthworm addition on soil ammonia oxidizers remain poorly understood. Methods A 2-year plot experiment was conducted with 5 treatments: no fertilizer (CK); regular fertilization (RT); straw returning (SR); earthworm addition (W); straw returning + earthworm addition (SRW). The AOA, AOB, comammox clade-A and clade-B community microbial diversities and structures were investigated by high-throughput sequencing. Results The results showed that (1) compared to RT treatment, W, SR, and SRW treatments all significantly increased the richness of AOA and comammox clade-A and clade-B (p < 0.05), and the richness of AOB was only significantly promoted by SRW treatment (p < 0.05). However, only SRW had a higher comammox clade-B diversity index than RT. (2) The ammonia oxidizer community structures were altered by both straw returning and earthworm addition. Soil NH4 +-N was the critical environmental driver for altering the ammonia oxidizer community structure. (3) Compared with RT treatment, the soil potential nitrification rate (PNR) of W and SRW treatments increased by 1.19 and 1.20 times, respectively. The PNR was significantly positively correlated with AOB abundance (path coefficient = 0.712, p < 0.05) and negatively correlated with clade-B abundance (path coefficient = -0.106, p < 0.05). Discussion This study provides scientific support for the application of straw returning combined with earthworm addition to improve soil nitrification with respect to soil ammonia-oxidizing microorganisms.
Collapse
Affiliation(s)
- Xiangqian Chu
- Shanghai Academy of Agricultural Sciences, Eco-environmental Protection Institute, Shanghai, China
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Naling Bai
- Shanghai Academy of Agricultural Sciences, Eco-environmental Protection Institute, Shanghai, China
- Shanghai Agricultural Academy of Sciences, Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Xianqing Zheng
- Shanghai Academy of Agricultural Sciences, Eco-environmental Protection Institute, Shanghai, China
- Shanghai Agricultural Academy of Sciences, Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Quanhua Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xi Pan
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shuangxi Li
- Shanghai Academy of Agricultural Sciences, Eco-environmental Protection Institute, Shanghai, China
- Shanghai Agricultural Academy of Sciences, Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Juanqin Zhang
- Shanghai Academy of Agricultural Sciences, Eco-environmental Protection Institute, Shanghai, China
- Shanghai Agricultural Academy of Sciences, Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Haiyun Zhang
- Shanghai Academy of Agricultural Sciences, Eco-environmental Protection Institute, Shanghai, China
- Shanghai Agricultural Academy of Sciences, Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Wenjie He
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Feng Zhong
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Weiguang Lv
- Shanghai Academy of Agricultural Sciences, Eco-environmental Protection Institute, Shanghai, China
- Shanghai Agricultural Academy of Sciences, Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Hanlin Zhang
- Shanghai Academy of Agricultural Sciences, Eco-environmental Protection Institute, Shanghai, China
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, China
| |
Collapse
|