1
|
Pallavolu MR, Kumar V, Ranjan R, Kumar S, Sreedhar A, Misra M. Advanced environmental remediation using enhanced performance of hollow ZnO@SnIn 4S 8 core-shell nanorod arrays for hazardous ion and organic pollutant removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124109. [PMID: 39823930 DOI: 10.1016/j.jenvman.2025.124109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Herein, novel hollow ZnO and ZnO@SnIn4S8 core-shell nanorods (NRs) with controlled shell thickness were developed via a facile synthesis approach for the efficient photocatalytic remediation of organic as well inorganic water pollutants. The introduction of SnIn4S8 shell layer coating over ZnO enhances visible light absorption, efficient exciton-mediated direct charge transfer, and reduces the band gap of ZnO@SnIn4S8 core-shell nanorods. The ZnO@SnIn4S8 core-shell nanorods show efficient solar-light driven catalytic efficiency for the disintegration of industrial dye (orange G), degradation of tetracycline, and reduction of hazardous Cr (VI) ions in aquatic systems. The measured photocurrent density of ZnO@SnIn4S8 core-shell NRs under illumination of simulated solar light was about nine times higher than ZnO NRs. It has been revealed that charge transfer resistance (RCT) of ZnO@SnIn4S8 core-shell NRs was doubled after the illumination of solar light. The developed ZnO@SnIn4S8 core-shell NRs photocatalyst efficiently decontaminate about 99.8 ± 02, 99.98 ± 0.01, and 99.8% of methyl orange, tetracycline, and Cr(VI), respectively. Notably, under similar conditions, ZnO was able to display efficiencies of 29.3 ± 0.6, 27.08 ± 1.1 and 31.1 ± 6.3 % of methyl orange, tetracycline, and Cr(VI), respectively. It was also noted that •O2‾, •OH radical, and holes were majorly contributed in the photocatalysis process for disintegration of industrial dye (orange G), tetracycline and finally transform to water and carbon dioxide. Overall, this work explores an intense insight and a novel idea for a hollow core-shell nanocomposite for photocatalytic reduction of diverse pollutants.
Collapse
Affiliation(s)
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Rahul Ranjan
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, India
| | - Sanjeev Kumar
- Department of Physics, Chandigarh University, Mohali, 140413, Gharuan, India
| | - Adem Sreedhar
- Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, South Korea.
| | - Mrinmoy Misra
- Mechatronics Engineering Department, School of Automobile, Mechanical and Mechatronics, Manipal University Jaipur, India.
| |
Collapse
|
2
|
Azmoon P, Farhadian M, Pendashteh A, Tangestaninejad S. Oil well-produced water pollutant adsorption and photodegradation using an innovative double Z-scheme ternary heterostructure of MIL-101(Cr)/Fe 3O 4-SiO 2/nanorod-graphitic carbon nitride: adsorption isotherm and degradation kinetic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6244-6272. [PMID: 39992519 DOI: 10.1007/s11356-025-35891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/02/2025] [Indexed: 02/25/2025]
Abstract
An innovative ternary heterostructure, MIL-101(Cr)/Fe3O4-SiO2/nanorod-graphitic carbon nitride (MIL-Cr/F@S/nr-GCN), was synthesized by hydrothermal technique. Comprehensive physiochemical characterizations were conducted to elucidate the structural and optical properties. The synthesized photocatalysts were evaluated for adsorption and photodegradation of oil well-produced water pollutants. Remarkably, the ternary heterostructure composite with 20 wt% of nr-GCN exhibited superior photocatalytic performance compared to nr-GCN and the MIL-Cr/F@S binary composite. Under visible-light illumination, the maximum removal efficiency of chemical oxygen demand for synthetic oil well-produced water reached 97.4% under optimized conditions (pH 4, illumination time 90 min, photocatalyst dosage 0.6 g/L, and pollutant initial concentration 754 mg/L). Adsorption studies revealed adherence to the pseudo-second-order kinetic and Freundlich isotherm models The ternary composite displayed degradation rates 2.8 and 2 times higher than nr-GCN and MIL-Cr/F@S, respectively. This enhanced activity was attributed to the double Z-scheme configuration, providing high specific surface area (653 m2/g), appropriate bandgap energy (1.6 eV), and efficient charge carrier separation. Moreover, the ternary photocatalysts demonstrated excellent reusability over five cycles without Cr ions leaching into the water. These findings underscore the potential of the novel ternary heterostructure as a green and robust photocatalyst for oil well-produced water treatment.
Collapse
Affiliation(s)
- Parisa Azmoon
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Mehrdad Farhadian
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
| | - Alireza Pendashteh
- Department of Chemical Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
- Department of Water and Environmental Engineering, Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran
| | | |
Collapse
|
3
|
Kumari S, Verma L, Prasad GVS, Ramesh MD, Kondal N, Dhiman V, Sharma N, Kumari A, Sharma R. Microwave assisted green synthesized copper- carrageenan bionanocomposite for efficient removal of cefixime from defile water. Int J Biol Macromol 2024; 283:137963. [PMID: 39581412 DOI: 10.1016/j.ijbiomac.2024.137963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Water contamination, particularly by antibiotics, poses a significant threat to both natural resources and human health due to the rise of antibiotic-resistant microorganisms. Addressing this issue requires an eco-friendly and effective solution. In this study, we synthesized a Copper-Carrageenan bionanocomposite for the photocatalytic degradation of Cefixime (CF) using a green route, avoiding traditional chemical methods. The reduction of metal ions was achieved using Argemone albiflora leaf extract, a medicinal plant not consumed by humans or animals. κ-Carrageenan, a biopolymer, encapsulated the CuO nanoparticles. The bionanocomposite was synthesized in a one-pot reaction and characterized by XRD, FTIR, TEM, XPS, and UV-Visible spectroscopy. XRD, FTIR, and EDS confirmed the incorporation of CuO nanoparticles within the carrageenan matrix. The size of the synthesized nanoparticles ranged from 11.9 to 13.8 nm, and the encapsulated BNC particles ranged from 6.8 to 4.9 nm. The bionanocomposite efficiently degraded 91.85 % of CF in 90 min under optimal conditions. Kinetic studies revealed that the photocatalytic degradation follows pseudo-first-order kinetics. Degradation conditions such as time, pH, catalyst concentration, and drug concentration were optimized. A 20 mg/L BNC catalyst was used to degrade a 20 ppm CF solution. The degradation intermediates were analysed by LCMS, and the degradation mechanism is discussed in this work.
Collapse
Affiliation(s)
- Shilpa Kumari
- Department of Chemistry, Career Point University, Bhoranj (Tikker-Kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India; Centre for Nano-Science & Technology, CPU, Hamirpur, Himachal Pradesh 176041, India; Center for Green Energy Research, CPU, Hamirpur, Himachal Pradesh 176041, India
| | - Lokesh Verma
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - G V Siva Prasad
- Department of Basic Sciences and Humanities, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - M D Ramesh
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Neha Kondal
- Department of Physics, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Vikas Dhiman
- Govt. College Dhaliara, Distt. Kangra, Himachal Pradesh 177103, India
| | - Neha Sharma
- Department of Physics, Sardar Patel University, Mandi, Himachal Pradesh 175001, India
| | - Asha Kumari
- Department of Chemistry, Career Point University, Bhoranj (Tikker-Kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India; Centre for Nano-Science & Technology, CPU, Hamirpur, Himachal Pradesh 176041, India; Center for Green Energy Research, CPU, Hamirpur, Himachal Pradesh 176041, India.
| | - Rahul Sharma
- Department of Chemistry, Career Point University, Bhoranj (Tikker-Kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India; Centre for Nano-Science & Technology, CPU, Hamirpur, Himachal Pradesh 176041, India; Center for Green Energy Research, CPU, Hamirpur, Himachal Pradesh 176041, India.
| |
Collapse
|
4
|
Azmoon P, Farhadian M, Pendashteh A, Navarchian AH. Synergistic effect of adsorption and photocatalytic degradation of oilfield-produced water by electrospun photocatalytic fibers of Polystyrene/Nanorod-Graphitic carbon nitride. J Environ Sci (China) 2024; 141:287-303. [PMID: 38408829 DOI: 10.1016/j.jes.2023.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 02/28/2024]
Abstract
Graphitic carbon nitride with nanorod structure (Nr-GCN) was synthesized using melamine as a precursor without any other reagents by hydrothermal pretreatment method. XRD, FTIR, SEM, N2 adsorption-desorption from BET, UV-Vis DRS spectroscopy, and photoluminescence were used to characterize the prepared samples. Also, the photoelectrochemical behavior of nanoparticles was studied by photocurrent transient response and cyclic voltammetry analysis. Polystyrene (PS) fibrous mat was fabricated by electrospinning technique and used as a support for the stabilization of the nanoparticles. The performance of the synthesized nanoparticles and photocatalytic fibers (PS/Nr-GCN) was evaluated in oilfield-produced water treatment under visible light irradiation. During this process, oil contaminants were adsorbed by hydrophobic polystyrene fibers and simultaneously degraded by Nr-GCN. The removal efficiency of chemical oxygen demand (COD) has been obtained 96.6% and 98.4% by Nr-GCN and PS/Nr-GCN, respectively, at the optimum conditions of pH 4, photocatalyst dosage 0.5 g/L, COD initial concentration 550 mg/L, and illumination time 150 min. The gas chromatography-mass spectroscopy analysis results showed 99.3% removal of total petroleum hydrocarbons using photocatalytic fibers of PS/Nr-GCN. The results demonstrated that the GCN has outstanding features like controllable morphology, visible-light-driven, and showing high potential in oily wastewater remediation. Moreover, the synergistic effect of adsorption and photocatalytic degradation is an effective technique in oilfield-produced water treatment.
Collapse
Affiliation(s)
- Parisa Azmoon
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Mehrdad Farhadian
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
| | - Alireza Pendashteh
- Department of Chemical Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran; Department of Water and Environmental Engineering, Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran
| | - Amir H Navarchian
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| |
Collapse
|
5
|
Cheng S, Wang X, Zou P, Sun Z, Wei X, Ma G, Yu H. Theoretical studies on the aqueous phase and graphene heterogeneous degradation of acrylamide and acrylonitrile by HO, ClO, and BrO radicals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121473. [PMID: 38878582 DOI: 10.1016/j.jenvman.2024.121473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
The newly discovered ClO• and BrO• contribute to pollutant degradation in advanced oxidation processes, while acrylamide (AM) and acrylonitrile (ACN) are always the focus of scientists concerned due to their continuous production and highly toxic effects. Moreover, various particles with a graphene-like structure are the companions of AM/ACN in dry/wet sedimentation or aqueous phase existence, which play an important role in heterogeneous oxidation. Thus, this work focuses on the reaction mechanism and environmental effect of AM/ACN with ClO•/BrO•/HO• in the water environment under the influence of graphene (GP). The results show that although the reactivity sequence of AM and ACN takes the order of with HO• > with BrO• > with ClO•, the easiest channel always occurs at the same C-position of the two reactants. The reaction rate constants (k) of AM with three radicals are 2 times larger than that with ACN, and amide groups have a better ability to activate CC bonds than cyanide groups. The existence of GP can accelerate the target reaction, and the k increased by 9-13 orders of magnitude. The toxicity assessment results show that the toxic effect of most products is lower than that of parent compounds, but the environmental risk of products from ClO•/BrO•-adducts is higher than those from HO•-adducts. The oxidative degradation process based on ClO• and BrO• deserves special attention, and the catalytic effect of GP and its derivatives on the oxidation process is non-negligible.
Collapse
Affiliation(s)
- Sisi Cheng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xueyu Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Pengcheng Zou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Zhenkun Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Guangcai Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
6
|
Alsharyani AK, Muruganandam L. Fabrication of zinc oxide nanorods for photocatalytic degradation of docosane, a petroleum pollutant, under solar light simulator. RSC Adv 2024; 14:9038-9049. [PMID: 38500622 PMCID: PMC10945516 DOI: 10.1039/d4ra00672k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
The use of advanced oxidation processes (AOP) in photocatalysis is critical for treating hazardous chemical compounds in oil-produced water (OPW). ZnO NRs are one of the most important modern and safe photocatalysts and have been easily prepared by a microwave-assisted hydrothermal method and grown on glass substrates. Hexagonal-shaped ZnO NRs and a bandgap energy (Eg) of up to 3.2 eV were characterized using SEM, XRD, UV-Vis, and PL devices, respectively. The effectiveness of photocatalytic degradation on the organic docosane solution was evaluated using a solar light simulator. On the surface area of the ZnO NRs, high photon absorption causes e-/h+ pairs to be excited between the VB and CB, producing free radicals that immediately react with organic contaminants and transform them into harmless chemicals. The photocatalytic degradation efficiency of the compound docosane analysed using GC-MS/MS reached 68.5% at 5 hours of irradiation. A mechanism for the photocatalytic degradation of docosane was proposed at pH ∼ 6.5, and a reduction of 60.5% of the total organic carbon (TOC) was achieved. Thus, the photocatalytic treatment of organic compounds contained in OPW has great potential and serves an important environmental purpose.
Collapse
Affiliation(s)
- Ahmed K Alsharyani
- School of Chemical Engineering, Vellore Institute of Technology University India
- Nanotechnology Research Center, Sultan Qaboos University Muscat Oman
| | - L Muruganandam
- School of Chemical Engineering, Vellore Institute of Technology University India
| |
Collapse
|
7
|
Chinglenthoiba C, Mahadevan G, Zuo J, Prathyumnan T, Valiyaveettil S. Conversion of PET Bottle Waste into a Terephthalic Acid-Based Metal-Organic Framework for Removing Plastic Nanoparticles from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:257. [PMID: 38334528 PMCID: PMC10856359 DOI: 10.3390/nano14030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Micro- and nanoparticles of plastic waste are considered emerging pollutants with significant environmental and health impacts at high concentrations or prolonged exposure time. Here we report the synthesis and characterization of a known metal-organic framework (MOF) using terephthalic acid (TPA) recovered from the hydrolysis of polyethylene terephthalate (PET) bottle waste. This approach adds value to the existing large amounts of bottle waste in the environment. Fully characterized zinc-TPA MOF (MOF-5) was used for the extraction and removal of engineered polyvinyl chloride (PVC) and polymethylmethacrylate (PMMA) nanoparticles from water with a high efficiency of 97% and 95%, respectively. Kinetic and isotherm models for the adsorption of polymer nanoparticles (PNPs) on the MOF surface were investigated to understand the mechanism. The Qmax for PVC and PMMA NPs were recorded as 56.65 mg/g and 33.32 mg/g, respectively. MOF-5 was characterized before and after adsorption of PNPs on the surface of MOF-5 using a range of techniques. After adsorption, the MOF-5 was successfully regenerated and reused for the adsorption and removal of PNPs, showing consistent results for five adsorption cycles with a removal rate of 83-85%. MOF-5 was characterized before and after adsorption of PNPs on the surface using a range of techniques. The MOF-5 with PNPs on the surface was successfully regenerated and reused for the adsorption and removal of polymer nanoparticles, showing consistent results for five extraction cycles. As a proof of concept, MOF-5 was also used to remove plastic particles from commercially available body scrub gel solutions. Such methods and materials are needed to mitigate the health hazards caused by emerging micro- and nanoplastic pollutants in the environment.
Collapse
Affiliation(s)
| | | | | | | | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
8
|
Nazir A, Imran M, Kanwal F, Latif S, Javaid A, Kim TH, Boczkaj G, Shami A, Iqbal H. Degradation of cefadroxil drug by newly designed solar light responsive alcoholic template-based lanthanum ferrite nanoparticles. ENVIRONMENTAL RESEARCH 2023; 231:116241. [PMID: 37244493 DOI: 10.1016/j.envres.2023.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/02/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
In this work, lanthanum ferrite nanoparticles were synthesized via a simple co-precipitation method. Two different templates, namely sorbitol and mannitol, were used in this synthesis to tune the optical, structural, morphological, and photocatalytic properties of lanthanum ferrite. The synthesized lanthanum ferrite-sorbitol (LFOCo-So) and lanthanum ferrite-mannitol (LFOCo-Mo) were investigated through Ultraviolet-Visible (UV-Vis), X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR), Raman, Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX), and photoluminescence (PL) techniques to study the effects of the templates on the tunable properties of lanthanum ferrite nanoparticles. The UV-Vis study revealed a remarkably small bandgap (2.09 eV) of LFOCo-So compared to the LFOCo-Mo having a band gap of 2.46 eV. XRD analysis revealed a single-phased structure of LFOCo-So, whereas LFOCo-Mo showed different phases. The calculated crystallite sizes of LFOCo-So and LFOCo-Mo were 22 nm and 39 nm, respectively. FTIR spectroscopy indicated the characteristics of metal-oxygen vibrations of perovskites in both lanthanum ferrite (LFO) nanoparticles, whereas a slight shifting of Raman scattering modes in LFOCo-Mo in contrast to LFOCo-So showed the octahedral distortion of the perovskite by changing the template. SEM micrographs indicated porous particles of lanthanum ferrite with LFOCo-So being more uniformly distributed, and EDX confirmed the stoichiometric ratios of the lanthanum, iron, and oxygen in the fabricated lanthanum ferrite. The high-intensity green emission in the photoluminescence spectrum of LFOCo-So indicated more prominent oxygen vacancies than LFOCo-Mo. The photocatalytic efficiency of synthesized LFOCo-So and LFOCo-Mo was investigated against cefadroxil drug under solar light irradiation. At optimized photocatalytic conditions, LFOCo-So showed higher degradation efficiency of 87% in only 20 min than LFOCo-Mo having photocatalytic activity of 81%. The excellent recyclability of the LFOCo-So reflected that it could be reused without affecting photocatalytic efficiency. These findings showed that sorbitol is a useful template for the lanthanum ferrite particles imparting outstanding features, enabling it to be used as an efficient photocatalyst for environmental remediation.
Collapse
Affiliation(s)
- Ammara Nazir
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan.
| | - Farah Kanwal
- Centre for Physical Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Tak H Kim
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland; EkoTech Center, Gdańsk University of Technology, G. Narutowicza St. 11/12, Gdansk, 80-233, Poland
| | - Ashwag Shami
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Hafiz Iqbal
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| |
Collapse
|
9
|
Raja A, Son N, Kang M. Graphene-based strontium niobate-zinc oxide heterojunction photocatalyst for effective reduction of hexavalent chromium. CHEMOSPHERE 2023; 331:138781. [PMID: 37119926 DOI: 10.1016/j.chemosphere.2023.138781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
A hydrothermal technique was employed to synthesize a Sr2Nb2O7-rGO-ZnO (SNRZ) ternary nanocatalyst, in which ZnO and Sr2Nb2O7 were deposited on reduced graphene oxide (rGO) sheets. The surface morphologies, optical properties, and chemical states, of the photocatalysts were characterized to understand their properties. The SNRZ ternary photocatalyst was superior over the reduction of Cr (VI) to harmless Cr (III) compared to the efficiencies obtained using bare, binary, and composite catalysts. The effects of various parameters, including the solution pH and weight ratio, on the photocatalytic reduction of Cr (VI) were investigated. The highest photocatalytic reduction performance (97.6%) was achieved at pH 4 and a reaction time of 70 min. Photoluminescence emission measurements were used to confirm efficient charge migration and separation across the SNRZ, which improved the reduction of Cr (VI). A feasible reduction mechanism for the SNRZ photocatalyst is proposed. This study presents an effective, inexpensive, non-toxic, and stable catalyst, for the reduction of Cr (VI) to Cr (III) using SNRZ ternary nanocatalysts.
Collapse
Affiliation(s)
- Annamalai Raja
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Namgyu Son
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Misook Kang
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
10
|
Janani FZ, Khiar H, Taoufik N, Elhalil A, Sadiq M', Mansouri S, Barka N. ZnO-Zn 2TiO 4 heterostructure for highly efficient photocatalytic degradation of pharmaceuticals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:81403-81416. [PMID: 36044150 PMCID: PMC9430018 DOI: 10.1007/s11356-022-22791-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
In this study, ZnO-Zn2TiO4 (ZTM) material was prepared through a novel synthesis method based on a ultrasound-assisted polyol-mediated process followed by calcination at a different temperature. Physical features of the samples were studied by using various analysis techniques including XRD, FT-IR, SEM/EDX, pHPZC, and UV-Vis DRS. Subsequently, the materials were employed as catalysts for the photocatalytic degradation of clofibric acid as a model pharmaceutical contaminant. The photocatalytic performance was evaluated under different conditions of calcination temperature, catalyst dosage, starting concentration, and initial pH of clofibric acid solution. The finding results revealed that hexagonal-tetragonal phases of ZnO-Zn2TiO4 calcined at 600 °C (ZTM-600) with an average crystallite size of 97.8 Å exhibited the best degradation efficiency (99%). The primary bands characteristic of ZnO and Zn2TiO4 were displayed by FT-IR analysis and the UV-visible DRS confirms the larger absorption capacity in UV-visible regions. The photogenerated electrons are the powerful reactive species involved in clofibric acid photodegradation process. This study shows a promising photocatalyst and provides new sight to rational design the facets of photocatalysis process for enhanced photocatalytic performances and effective wastewater treatment.
Collapse
Affiliation(s)
- Fatima Zahra Janani
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP.145, 2500, Khouribga, Morocco
| | - Habiba Khiar
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP.145, 2500, Khouribga, Morocco
| | - Nawal Taoufik
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP.145, 2500, Khouribga, Morocco
| | - Alaâeddine Elhalil
- Laboratory of Process and Environmental Engineering, Higher School of Technology, Hassan II University of Casablanca, Casablanca, Morocco
| | - M 'hamed Sadiq
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP.145, 2500, Khouribga, Morocco
| | - Said Mansouri
- Materials Science Energy and Nanoengineering Department (MSN), VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, 43150, Benguerir, Mohammed, Morocco
| | - Noureddine Barka
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP.145, 2500, Khouribga, Morocco.
| |
Collapse
|
11
|
Tian N, Giannakis S, Akbarzadeh L, Hasanvandian F, Dehghanifard E, Kakavandi B. Improved catalytic performance of ZnO via coupling with CoFe 2O 4 and carbon nanotubes: A new, photocatalysis-mediated peroxymonosulfate activation system, applied towards Cefixime degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117022. [PMID: 36549062 DOI: 10.1016/j.jenvman.2022.117022] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
In this study, a ternary ZnO@spinel cobalt ferrite@carbon nanotube magnetic photocatalyst (ZSCF@CNT) was successfully synthesized and used to activate peroxymonosulfate (PMS) for Cefixime (CFX) antibiotic degradation under UVC irradiation. The morphology, optical, structural, and physicochemical properties of ZSCF@CNT were characterized and analyzed by XPS, XRD, FESEM-EDX, TEM, BET, VSM, UV-vis DRS and PL analysis. The results indicated that the ternary ZSCF@CNT photocatalyst exhibited superior catalytic activity on CFX elimination than that of individual components and binary composite catalysts, in which CFX with was rapidly removed under UVC irradiation and PMS. The effect of operational parameters including initial PMS, catalyst, and CFX concentrations and solution pH on the catalytic activity was investigated in detail; the optimal conditions were: pH: 7.0, catalyst: 0.3 g/L, PMS: 3.0 mM, leading to total CFX (10 mg/L) elimination in ∼20 min. Based on the radical scavenger tests, various radicals and non-radical species including sulfate, hydroxyl and superoxide radicals, singlet oxygen and electrons were involved in the ZSCF@CNT/PMS/UVC system. The high surface area, reduced agglomeration formation and excellent separation of photogenerated electron-hole pairs embodied in ZSCF@CNT photocatalyst conferred its superior catalytic activity and stability. The results from the tests in real water matrices revealed that ZSCF@CNT could be a promising photocatalyst to activate PMS for actual aqueous matrices' treatment.
Collapse
Affiliation(s)
- Na Tian
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad Docente Ingeniería Sanitaria, C/ Profesor Aranguren, S/n, ES, 28040, Madrid, Spain
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad Docente Ingeniería Sanitaria, C/ Profesor Aranguren, S/n, ES, 28040, Madrid, Spain
| | - Leila Akbarzadeh
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
| | - Farzad Hasanvandian
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Emad Dehghanifard
- Department of Environmental Health Engineering, Faculty of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Kakavandi
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran; Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
12
|
Photocatalytic Degradation of Cefixime using CuO-NiO Nanocomposite Photocatalyst. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Yu F, Chen H, Tian X, Zhou Y, Cui J, Li C, Zhang J, Tang X, Liu Y. Studies on the preparation and optical properties of ZnO hollow nanosphere/ZnCo2S4 nanoparticle composite photocatalyst. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Izadkhah V, Ghorbani-Vaghei R, Alavinia S, Asadabadi S, Emami N, Jamehbozorgi S. Fabrication of Zirconium Metal-Organic-framework/Poly Triazine-phosphanimine Nanocomposite for Dye Adsorption from Contaminated Water: Isotherms and Kinetics Models. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|