1
|
Yang R, Li Z, Pitakrattanawong C, Zhu L, Li B, Fang L, Fan L, Song C, Meng S. Magnetic nanoparticle modified moss Biochar: A novel solution for effective removal of enrofloxacin from aquaculture water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123956. [PMID: 39754798 DOI: 10.1016/j.jenvman.2024.123956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
The presence of residual antibiotics in water constitutes a potential threat to aquatic environments. Therefore, designing environmentally friendly and efficient biochar adsorbents is crucial. Aquaculture by-product moss (bryophyte) was transformed into biochar, which can eliminate antibiotics from wastewater through adsorption. This study successfully fabricated moss biochar (BC) and magnetically modified moss biochar (MBC), and explored their adsorption performance for enrofloxacin (ENR). Characterization analyses revealed that the specific surface area, total pore volume, and the quantity of functional groups of the MBC were significantly larger than those of the BC. The Langmuir isotherm model suggests that the maximum adsorption capacities of BC and MBC for ENR are 7.24 mg g⁻1 and 11.62 mg g⁻1. The adsorption process conforms to a pseudo-second-order kinetic model. Studies carried out at different temperatures disclose the spontaneous and endothermic thermodynamic characteristics of the system. Under neutral conditions, the adsorption efficiency attains its peak. The existence of various coexisting ions in water exerts a negligible influence on the adsorption process; furthermore, when the concentration of humic acid (HA) ranges from 0 to 20 mg/L, the removal rate remains above 90%. In actual water samples, the antibiotic removal rate can be as high as 96.84%. After three cycles of reuse, the structure of MBC remains unchanged while maintaining a high removal efficiency. The primary mechanisms for antibiotic adsorption by MBC involve electrostatic interactions, hydrophobic interactions, pore-filling effects, hydrogen bonding, and π-π interactions. This reusable magnetic moss biochar provides a promising research direction for effectively eliminating antibiotics from water sources.
Collapse
Affiliation(s)
- Ruonan Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China.
| | - Zhonghua Li
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China.
| | | | - Lei Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China.
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China.
| | - Longxiang Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China.
| | - Limin Fan
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China.
| | - Chao Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China; Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China.
| | - Shunlong Meng
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China.
| |
Collapse
|
2
|
Lv L, Yin B, Zhang D, Ji W, Liang J, Liu X, Gao W, Sun L, Ren Z, Zhang G, Zhang R. Synchronous reinforcement azo dyes decolorization and anaerobic granular sludge stability by Fe, N co-modified biochar: Enhancement based on extracellular electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135836. [PMID: 39276735 DOI: 10.1016/j.jhazmat.2024.135836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Anaerobic digestion (AD) treatment of azo dyes wastewater often suffers from low decolorization efficiency and poor stability of anaerobic granular sludge (AnGS). In this study, iron and nitrogen co-modified biochar (FNC) was synthesized based on the secondary calcination method, and the feasibility of this material for enhanced AD treatment of azo dye wastewater and its mechanism were investigated. FNC not only formed richer conducting functional groups, but also generated Fe2+/Fe3+ redox pairs. The decolorization efficiency of Congo red and AD properties (e.g., methane production) were enhanced by FNC. After adding FNC, the content of extracellular polymeric substances (EPS) and the ratio of proteins remained stable under the impact of Congo red, which greatly protected the internal microbial community. This was mainly contributed to the excellent electrochemical properties of FNC, which strengthened the microbial extracellular electron transfer and realized the coupled mechanism of action: On the one hand, an electron transfer bridge between decolorizing bacteria and dyes was constructed to achieve rapid decolorization of azo dyes and mitigate the impact on methanogenic bacteria; On the other hand, the stability of AnGS was enhanced based on enhanced extracellular polymeric substances secretion, microbial community and direct interspecies electron transfer (DIET) process. This study provides a new idea for enhanced AD treatment of azo dyes wastewater.
Collapse
Affiliation(s)
- Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Bingbing Yin
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Duoying Zhang
- School of Civil Engineering, Heilongjiang University, Harbin 150086, PR China
| | - Wenbo Ji
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jinsong Liang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Xiaoyang Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Li Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Ruijun Zhang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
3
|
Ma P, Yin B, Wu M, Han M, Lv L, Li W, Zhang G, Ren Z. Synergistic enhancement of microbes-to-pollutants and inter-microbes electron transfer by Fe, N modified ordered mesoporous biochar in anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135030. [PMID: 38944989 DOI: 10.1016/j.jhazmat.2024.135030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Extracellular electron transfer was essential for degrading recalcitrant pollutants by anaerobic digestion (AD). Therefore, existing studies improved AD efficiency by enhancing the electron transfer from microbes-to-pollutants or inter-microbes. This study synthesized a novel Fe, N co-doped biochar (Fe, N-BC), which could enhance both the microbes-to-pollutants and inter-microbes electron transfer in AD. Detailed characterization data indicated that Fe, N-BC has an ordered mesoporous structure, high specific surface area (463.46 m2/g), and abundant redox functional groups (Fe2+/Fe3+, pyrrolic-N), which translate into excellent biocompatibility and electrochemical properties of Fe, N-BC. By adding Fe, N-BC, the stability and efficiency of the medium-temperature AD system in the treatment of methyl orange (MO) wastewater were improved: obtained a high degradation efficiency of MO (96.8 %) and enhanced the methane (CH4) production by 65 % compared to the control group. Meanwhile, Fe, N-BC reduced the accumulation of volatile fatty acids in the AD system, and the activity of anaerobic granular sludge electron transport system and coenzyme F420 was enhanced. In addition, Fe, N-BC showed positive enrichment of azo dyes decolorization bacteria (Georgenia) and direct interspecies electron transfer (DIET) synergistic partners (Syntrophobacter, Methanosarcina). Overall, the rapid degradation of MO and enhanced CH4 production in AD systems by Fe, N-BC is associated with enhancing two electronic pathways, i.e., microbes to MO and DIET between syntrophic bacteria and methanogenic archaea. This study introduced an enhanced "two-pathways of electron transfer" theory, realized by Fe, N-BC. These findings provided new insights into the interactions within AD systems and offer strategies for enhancing their performance with recalcitrant pollutants.
Collapse
Affiliation(s)
- Peiyu Ma
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Bingbing Yin
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Minhao Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Muda Han
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
4
|
Chen X, Song X, Chen W, Ao T. Enhanced phosphorus electrosorption using Fe, N-co-doped porous electrode via capacitive deionization. ENVIRONMENTAL TECHNOLOGY 2024; 45:3381-3395. [PMID: 37191243 DOI: 10.1080/09593330.2023.2215457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Excessive phosphorus discharge causes water eutrophication and disturbs the homeostasis of aquatic ecosystems. Capacitive deionization (CDI) has been proven to be a more energy-efficient and environmentally friendly technology for removing phosphorus. Raw carbon (Raw C) electrodes are widely used in CDI. However, the phosphorus removal capacity of most unmodified Raw C still needs to be enhanced. Therefore, the Fe, N-co-doped carbon prepared in this study was expected to further improve the phosphorus removal performance. Herein, the optimal electrode with 5% Fe (FeNC) had an approximately 2.7 times higher adsorption capacity than Raw C. At a low concentration (5 mg P/L), FeNC exhibited a high maximum removal capacity of 4.28 mg P/g. Under reversed voltage, the phosphorus was easily desorbed by deionized water. Ion competition studies showed that coexisting ions adversely affected phosphorus adsorption onto FeNC in the order SO42- > NO3- > Cl-. Furthermore, the energy consumption of FeNC was calculated to be as low as 0.0069 kWh/g P and 0.023 kWh/m3 water under 1.2 V. More importantly, phosphorus removal by FeNC during CDI was demonstrated in simulated natural water from the Jinjiang River (Chengdu, China). This study indicated that FeNC is expected to be a potential electrode for CDI dephosphorization.
Collapse
Affiliation(s)
- Xing Chen
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Song
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Wenqing Chen
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, People's Republic of China
- College of Water Resource and Hydropower, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
5
|
Han J, Jia J, Hu X, Sun L, Ulbricht M, Lv L, Ren Z. Effect of magnetic field coupled magnetic biochar on membrane bioreactor efficiency, membrane fouling mitigation and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172549. [PMID: 38643881 DOI: 10.1016/j.scitotenv.2024.172549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The excitation by magnetic field was established to mitigate the membrane fouling of magnetic biochar (MB)-supplemented membrane bioreactor (MBR) in this study. The results showed that the transmembrane pressure (TMP) increase rates decreased by about 8 % after introducing the magnetic field compared with the magnetic biochar-MBR (MB-MBR). Membrane characterization suggested that the flocs in the magnetic field-magnetic biochar-MBR (MF-MB-MBR) formed a highly permeable developed cake layer, and a fluffier and more porous deposited layer on membrane surface, which minimized fouling clogging of the membrane pores. Further mechanistic investigation revealed that the decrease in contact angle of fouled membrane surface in MF-MB-MBR, i.e. an enhanced membrane hydrophilicity, is considered important for forming highly permeable layers. Additionally, the magnetic field was demonstrated to have a positive effect on the improvement of the magneto-biological effect, the enhancement of charge neutralization and adsorption bridging between sludge and magnetic biochar, and the reduction of formation of extracellular polymeric substances (EPSs), which all yielded sludge flocs with a large pore structure conducive to form a fluffy and porous deposited layer in the membrane surface. Furthermore, high-throughput sequencing analysis revealed that the magnetic field also led to a reduction in microbial diversity, and that it promoted the enrichment of specific functional microbial communities (e.g. Bacteroidetes and Firmicutes) playing an important role in mitigating membrane fouling. Taken together, this study of magnetic field-enhanced magnetic biochar for MBR membrane fouling mitigation provides insights important new ideas for more effective and sustainable operation strategies.
Collapse
Affiliation(s)
- Jinlong Han
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jianna Jia
- Tianjin Research Institute for Water Transport Engineering, M.O.T., China
| | - Xiangjia Hu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Wuqing District Environmental Protection Bureau, Tianjin, 301700, China
| | - Li Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II and Center for Envirommental Research (ZWU), Universität Duisburg-Essen, 45117 Essen, Germany
| | - Longyi Lv
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhijun Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
6
|
Deng Y, Xiao T, She A, Li X, Chen W, Ao T, Ni F. One-step synthesis of iron and nitrogen co-doped porous biochar for efficient removal of tetracycline from water: Adsorption performance and fixed-bed column. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:119984. [PMID: 38218166 DOI: 10.1016/j.jenvman.2023.119984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/03/2023] [Accepted: 12/17/2023] [Indexed: 01/15/2024]
Abstract
Here, Fe/N co-doped porous biochars (FeNKBCs) were obtained by grinding corncob, CH3COOK, FeCl3·6H2O, and C3H6N6 via one-step synthesis and were applied to remove antibiotics from wastewater. Notably, CH3COOK had an excellent porous activation ability. The developed nanotubular structure of Fe1N2KBC had a high pore volume (Vtotal) (1.2131 cm3/g) and specific surface areas (SSA) (2083.54 m2/g), which showed outstanding sorption abilities for TC (764.35 mg/g), OTC (560.82 mg/g), SMX (291.45 mg/g), and SMT (354.65 mg/g). The adsorption process of TC was controlled by chemisorption. Moreover, Fe1N2KBC has an excellent dynamic adsorption performance (620.14 mg/g) in a fixed-bed column. The properties of SSA, Vtotal, and the content of graphite N and Fe-N were positively correlated with TC adsorption capacity. The high performance of TC removal was related to π-π stacking, pore-filling, hydrogen bond, and electrostatic interaction. Fe1N2KBC possessed stable sorption amounts in pH 2-12 and actual water, and well reuse performance. The results of this work present an effective preparation method of Fe/N porous biochar for TC-contaminated water remediation.
Collapse
Affiliation(s)
- Yu Deng
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an, 625014, China; College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China
| | - Tong Xiao
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ailun She
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xiaodong Li
- College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China
| | - Wenqing Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Tianqi Ao
- College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China.
| | - Fuquan Ni
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
7
|
Liu Y, Zhang X, Liu H. Removal of typical pollutant ciprofloxacin using iron-nitrogen co-doped modified corncob in the presence of hydrogen peroxide. RSC Adv 2023; 13:34335-34347. [PMID: 38024979 PMCID: PMC10664827 DOI: 10.1039/d3ra06437a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
Iron-nitrogen co-doped modified corncob (Fe-N-BC) was synthesized using a hydrothermal and calcination method. The material shows excellent oxidation performance and environmental friendliness. When the dosage of Fe-N-BC was 0.6 g L-1, the concentration of H2O2 was 12 mM and pH was 4, ciprofloxacin (CIP) was virtually totally eliminated in 240 min under Fe-N-BC/H2O2 conditions. The TOC removal efficiency was 54.6%, and the effects of various reaction parameters on the catalytic activity of Fe-N-BC were thoroughly assessed. Through electron paramagnetic resonance (EPR) analyses and free radical quenching experiments, it was established that the reactive oxygen species (˙OH, ˙O2-, 1O2) were crucial in the elimination of CIP. Furthermore, the degradation of CIP was accelerated by the synergistic interaction between the transition metal and PFRs. A thorough evaluation was conducted to assess the respective contributions of adsorption and catalytic oxidation in the system. The degradation mechanism of CIP was proposed under Fe-N-BC/H2O2 conditions. Meanwhile, the possible degradation intermediates and pathways were proposed, and the toxicity of the degradation products of CIP was also meticulously investigated in the study. These findings offered the elimination of CIP in water a theoretical foundation and technical support.
Collapse
Affiliation(s)
- Yuankun Liu
- Municipal Engineering Department, College of Civil Engineering and Architecture, Beijing University of Technology Beijing 100124 P. R. China +86-10-6739-1726 +86-10-6739-1726
| | - Xinxia Zhang
- Municipal Engineering Department, College of Civil Engineering and Architecture, Beijing University of Technology Beijing 100124 P. R. China +86-10-6739-1726 +86-10-6739-1726
| | - Hongrun Liu
- Municipal Engineering Department, College of Civil Engineering and Architecture, Beijing University of Technology Beijing 100124 P. R. China +86-10-6739-1726 +86-10-6739-1726
| |
Collapse
|
8
|
Diao Y, Shan R, Li M, Li S, Huhe T, Yuan H, Chen Y. Magnetized algae catalyst by endogenous N to effectively trigger peroxodisulfate activation for ultrafast degraded sulfathiazole: Radical evolution and electron transfer. CHEMOSPHERE 2023; 342:140205. [PMID: 37722535 DOI: 10.1016/j.chemosphere.2023.140205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
An innovative Fe-N co-coupled catalyst MN-2 was prepared from waste spirulina by co-pyrolysis as a highly active carbon-based catalyst for the activation of peroxydisulfate (PDS) for the degradation of sulfathiazole (ST). The protein-rich raw material Spirulina provided sufficient N during the pyrolysis process, thus achieving N doping without an additional nitrogen source, optimizing the interlayer structure of the biochar material and effectively inhibiting the leaching of the ligand metal Fe. MN-2 showed highly efficient catalytic activity for peroxydisulfate (PDS), with a degradation efficiency of 100% for ST within 30 min and a kinetic constant (kobs) reached 0.306 min-1, benefiting from the excellent adsorption ability of MN-2 forming MN-2-PDS* complexes and the electron transfer process generated by Fe3+ and Fe2+ cycling, oxygen-containing functional groups. The effects of PDS dosage, initial pH and coexisting anions on the oxidation process were also investigated. Free radical quenching, electron paramagnetic resonance and electrochemical measurements were employed to explain the hydroxyl (·OH) and sulfate (SO4·-) as the dominant active species and the electron transfer effect on the removal of ST. MN-2 maintained a ST removal rate of 84% after four recycling experiments, showing a high reusability performance. This work provides a simple way to prepare magnetized N-doped biochar, a novel catalyst (MN-2) for efficient activation of PDS for ST degradation, and a feasible method for removing sulfanilamide antibiotics in water environment.
Collapse
Affiliation(s)
- Yuan Diao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong, 250000, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Rui Shan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Mei Li
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong, 250000, PR China
| | - Shuang Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Taoli Huhe
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Haoran Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| | - Yong Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| |
Collapse
|
9
|
Wang H, Wu Y, Wen Y, Chen D, Pu J, Ding Y, Kong S, Wang S, Xu R. Simultaneously Cationic and Anionic Dyes Elimination via Magnetic Hydrochar Prepared from Copper Slag and Pinewood Sawdust. TOXICS 2023; 11:484. [PMID: 37368584 DOI: 10.3390/toxics11060484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
In practical wastewater, cationic and anionic dyes usually coexist, while synergistic removal of these pollutants is difficult due to their relatively opposite properties. In this work, copper slag (CS) modified hydrochar (CSHC) was designed as functional material by the one-pot method. Based on characterizations, the Fe species in CS can be converted to zero-valent iron and loaded onto a hydrochar substrate. The CSHC exhibited efficient removal rates for both cationic dyes (methylene blue, MB) and anionic dyes (methyl orange, MO), with a maximum capacity of 278.21 and 357.02 mg·g-1, respectively, which was significantly higher than that of unmodified ones. The surface interactions of MB and MO between CSHC were mimicked by the Langmuir model and the pseudo-second-order model. In addition, the magnetic properties of CSHC were also observed, and the good magnetic properties enabled the adsorbent to be quickly separated from the solution with the help of magnets. The adsorption mechanisms include pore filling, complexation, precipitation, and electrostatic attraction. Moreover, the recycling experiments demonstrated the potential regenerative performance of CSHC. All these results shed light on the co-removal of cationic and anionic contaminates via these industrial by-products derived from environmental remediation materials.
Collapse
Affiliation(s)
- Huabin Wang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Yi Wu
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Yi Wen
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Dingxiang Chen
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Jiang Pu
- Shiping Center for Rural Energy and Environment, Honghe 661400, China
| | - Yu Ding
- Baoshan City Longyang Rural Energy Workstation, Baoshan 678000, China
| | - Sailian Kong
- Development Center for Rural Affairs of Jiangchuan District, Yuxi 651100, China
| | - Shuaibing Wang
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Rui Xu
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
10
|
Li X, Cao H, Cao Y, Zhao Y, Zhang W, Shen J, Sun Z, Ma F, Gu Q. Insights into the mechanism of persulfate activation with biochar composite loaded with Fe for 2,4-dinitrotoluene degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:117955. [PMID: 37148765 DOI: 10.1016/j.jenvman.2023.117955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Iron in biochar composite loaded with Fe (Fex@biochar) is crucial for persulfate activation. However, the iron dosages-driven mechanism linked to the speciation, electrochemical property, and persulfate activation with Fex@biochar remains ambiguous. We synthesized and characterized a series of Fex@biochar and evaluated its catalytic performance in 2,4-dinitrotoluene removal experiments. With increasing FeCl3 dosage, iron speciation in Fex@biochar changed from γ-Fe2O3 to Fe3O4, and the variation in functional groups was as follows: Fe-O, aliphatic C-O-H, O-H, aliphatic C-H, aromatic CC or CO, and C-N. The electron accepting capacity of Fex@biochar increased as the FeCl3 dosage increased from 10 to 100 mM but decreased at 300 and 500 mM FeCl3. 2,4-dinitrotoluene removal first increased and subsequently decreased, reaching 100% in the persulfate/Fe100@biochar system. The Fe100@biochar also showed good stability and reusability for PS activation, verified by five test cycles. The mechanism analysis indicated that the iron dosage altered the Fe (Ⅲ) content and electron accepting capacity of Fex@biochar during pyrolysis, further controlling persulfate activation and 2,4-dinitrotoluene removal. These results support the preparation of eco-friendly Fex@biochar catalysts.
Collapse
Affiliation(s)
- Xiaodong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Huizhen Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuan Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yao Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenwen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jialun Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zongquan Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Qingbao Gu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
11
|
Xie J, Liu M, He M, Liu Y, Li J, Yu F, Lv Y, Lin C, Ye X. Ultra-efficient adsorption of diclofenac sodium on fish-scale biochar functionalized with H 3PO 4 via synergistic mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121226. [PMID: 36754196 DOI: 10.1016/j.envpol.2023.121226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Developing safe and efficient diclofenac sodium (DS) removal technology has become a critical issue. This study synthesized the fish-scale biochar by co-pyrolysis of fish scale and phosphoric acid (H3PO4). In addition to increasing the specific surface area and pore volume of fish-scale biochar, H3PO4 assisted in the formation of Graphitic N and sp2 C, as well as reacting with C═O groups to form a significant number of phosphorus-containing groups. All these functional groups could act as major active sites for DS adsorption. Adsorption data could well fit pseudo-second-order and Langmuir models. The maximum adsorption capacity of FSB600-15 for DS was 967.1 mg g-1, which was much better than that reported in the literature. Under the synergistic effect of various mechanisms (pore-filling effect, electrostatic attraction, H-bonding, π-π, and n-π electron donor-acceptor interactions), the DS ultra-efficient adsorption on FSB600-15 was realized. Meanwhile, the DS adsorption by FSB600-15 was an endothermic, spontaneous, and entropy-increasing process. Furthermore, the DS adsorption capacity was more than 426.5 mg g-1 in the actual water, which was sufficient for practical applications.
Collapse
Affiliation(s)
- Jia Xie
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China
| | - Minghua Liu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China; College of Environmental and Biological Engineering, Putian University, Putian, 351100, Fujian, China.
| | - Miao He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yifan Liu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jian Li
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China
| | - Fangxia Yu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China
| | - Yuancai Lv
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Chunxiang Lin
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoxia Ye
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
12
|
Diao Y, Shan R, Li M, Gu J, Yuan H, Chen Y. Efficient Adsorption of a Sulfonamide Antibiotic in Aqueous Solutions with N-doped Magnetic Biochar: Performance, Mechanism, and Reusability. ACS OMEGA 2023; 8:879-892. [PMID: 36643494 PMCID: PMC9835783 DOI: 10.1021/acsomega.2c06234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Conventional biochar has limited effectiveness in the adsorption of sulfonamide antibiotics, while modified biochar exhibits greater adsorption potential. Residues of sulfamethoxazole (SMX) in the aquatic environment can threaten the safety of microbial populations as well as humans. In this study, iron-nitrogen co-doped modified biochar (Fe-N-BC) was prepared from palm fibers and doped with Fe and urea via synthesis at 500 °C. Fe-N-BC has a richer surface functional group based on elemental content, X-ray photoelectron spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The Brunauer-Emmett-Teller (BET) specific surface area test exhibited Fe-N-BC, which possessed a greater surface area (318.203 m2/g) and a better developed pore structure (0.149 cm3/g). The results of the hysteresis loop and the Raman spectrum show that Fe-N-BC has a higher degree of magnetization and graphitization. Fe-N-BC showed a remarkable adsorption capacity for SMX (42.9 mg/g), which could maintain 93.4% adsorption effect after four cycles, and 82.8% adsorption capacity in simulated piggery wastewater. The adsorption mechanism involves pore filling, surface complexation, electrostatic interactions, hydrogen bonding, and π-π EDA interactions. The results of this study show that Fe-N-BC prepared from palm fibers can be a stable, excellent adsorbent for SMX removal from wastewater and has promise in terms of practical applications.
Collapse
Affiliation(s)
- Yuan Diao
- School
of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong250000, China
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou510640, China
| | - Rui Shan
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou510640, China
| | - Mei Li
- School
of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong250000, China
| | - Jing Gu
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou510640, China
| | - Haoran Yuan
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou510640, China
| | - Yong Chen
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou510640, China
| |
Collapse
|