Bhardwaj A, Haswani D, Yadav K, Sunder Raman R. PM
2.5 carbonaceous components and mineral dust at a COALESCE network site - Bhopal, India: Estimating site-specific optical characteristics.
THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;
880:163277. [PMID:
37028678 DOI:
10.1016/j.scitotenv.2023.163277]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
Atmospheric PM2.5 thermal elemental carbon (EC), optical black carbon (BC), brown carbon (BrC), and mineral dust (MD) were characterized during a field campaign at a regionally representative site (Bhopal, central India) all year-long during 2019. In this study, the optical characteristics of PM2.5 during 'EC-rich', 'OC-rich', and 'MD-rich' days were used in a three-component model to estimate site-specific Absorption Ångström exponent (AAE) and absorption coefficient (babs) of light-absorbing PM2.5 constituents. The AAE for 'EC-rich', 'OC-rich', and 'MD-rich' days were 1.1 ± 0.2, 2.7 ± 0.3, and 3.0 ± 0.9, respectively. The percentage contribution of calculated babs of EC, BrC, and MD to the total babs at 405 nm was dominated by EC during the entire study period (EC; 64 % ± 36 %, BrC: 30 % ± 5 %, MD: 10 % ± 1 %). Further, site-specific mass absorption cross-section (MAC) values were calculated to assess the impact of their use over the use of manufacturer-specified MAC values in estimating BC concentrations. The r2 between thermal EC and optical BC was higher (r2 = 0.67, slope = 1.1) when daily site-specific MAC values were used rather than using the default MAC value (16.6 m2 g-1; r2 = 0.54 and slope = 0.6). Overall, had the default MAC880 been used instead of the site-specific values, we would have underestimated the BC concentration by 39 % ± 18 % during the study period.
Collapse