1
|
Asaithambi P, Ezzat AO, Bidira F, Busier Yesuf M, Abd-Elkader OH, Thirumurugan A, Hariharan NM, Al-Lohedan HA, Kadier A. Utilization of Pulsed Current-Electro Fenton Technology for the Treatment of Wastewater from Industrial Processes. ChemistryOpen 2025:e202400505. [PMID: 39981801 DOI: 10.1002/open.202400505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/12/2025] [Indexed: 02/22/2025] Open
Abstract
In recent years, there has been a rise in the use of electrochemical and advanced oxidation methods to treat the industrial wastewater. The efficiency of several approaches for treating industrial wastewater, including hydrogen peroxide (H2O2), electro-Fenton (EF) and pulsed-electro-Fenton (PEF) processes were all investigated. In evaluation to the H2O2, EF, and PEF technologies, the results showed that the PEF process produced 100 % total color and 98 % chemcial oxygen demand (COD) removal efficiency with a low consumption of power of 3.4 kWhrm-3. The experimental parameters comprised the following: COD - 2500 mg L-1, pH - 3, H2O2 - 300 mg L-1, distance between electrode - 0.75 cm, current - 0.40 A, cycle of pulse duty - 0.75, combination of electrode - Fe/Fe, stirring speed - 500 rpm and treatment duration (TD) - 125 min. It was demonstrated that increasing the TD, current, and H2O2 while lowering the COD content improved the COD elimination efficiency while employing a iron (Fe/Fe) electrode combination with wastewater pH of 3. The efficiency of the EF process has been reduced in comparison to the PEF process because of the development of an impermeable oxide layer on the cathode and the oxidation-induced corrosion on the anode. Consequently, experimental results have indicated that the PEF could be a more promising technology than the EF method for eliminating pollutants from wastewater with reduced power consumption and process efficiency.
Collapse
Affiliation(s)
- Perumal Asaithambi
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia, Po Box - 378
| | - Abdelrahman O Ezzat
- Department of Chemistry, College of Sciences, King Saud University, Po Box 2455, Riyadh, 11451, Saudi Arabia
| | - Firomsa Bidira
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia, Po Box - 378
| | - Mamuye Busier Yesuf
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia, Po Box - 378
| | - Omar H Abd-Elkader
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Arun Thirumurugan
- Sede Vallenar, Universidad de Atacama, Costanera #105, Vallenar, 1612178, Chile
| | - N M Hariharan
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Avadi, Chennai, 600062, Tamil Nadu, India
| | - Hamad A Al-Lohedan
- Department of Chemistry, College of Sciences, King Saud University, Po Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Shah AA, Walia S, Kazemian H. Advancements in combined electrocoagulation processes for sustainable wastewater treatment: A comprehensive review of mechanisms, performance, and emerging applications. WATER RESEARCH 2024; 252:121248. [PMID: 38335752 DOI: 10.1016/j.watres.2024.121248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
This review explores the potential and challenges of combining electrochemical, especially electrocoagulation (EC) process, with various - wastewater treatment methods such as membranes, chemical treatments, biological methods, and oxidation processes to enhance pollutant removal and reduce costs. It emphasizes the advantages of using electrochemical processes as a pretreatment step, including increased volume and improved quality of permeate water, mitigation of membrane fouling, and lower environmental impact. Pilot-scale studies are discussed to validate the effectiveness of combined EC processes, particularly for industrial wastewater. Factors such as electrode materials, coating materials, and the integration of a third process are discussed as potential avenues for improving the environmental sustainability and cost-effectiveness of the combined EC processes. This review also discusses factors for improvement and explores the EC process combined with Advanced Oxidation Processes (AOP). The conclusion highlights the need for combined EC processes, which include reducing electrode consumption, evaluating energy efficiency, and conducting pilot-scale investigations under continuous flow conditions. Furthermore, it emphasizes future research on electrode materials and technology commercialization. Overall, this review underscores the importance of combined EC processes in meeting the demand for clean water resources and emphasizes the need for further optimization and implementation in industrial applications.
Collapse
Affiliation(s)
- Aatif Ali Shah
- Materials Technology & Environmental Research (MATTER) lab, University of Northern British Columbia, Prince George, BC, Canada; Environment Science Program, Faculty of Environment, University of Northern British Columbia, Prince George, BC V2N4Z9, Canada.
| | - Sunil Walia
- Materials Technology & Environmental Research (MATTER) lab, University of Northern British Columbia, Prince George, BC, Canada
| | - Hossein Kazemian
- Materials Technology & Environmental Research (MATTER) lab, University of Northern British Columbia, Prince George, BC, Canada; Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Environment Science Program, Faculty of Environment, University of Northern British Columbia, Prince George, BC V2N4Z9, Canada.
| |
Collapse
|
3
|
Genethliou C, Tatoulis T, Charalampous N, Dailianis S, Tekerlekopoulou AG, Vayenas DV. Treatment of raw sanitary landfill leachate using a hybrid pilot-scale system comprising adsorption, electrocoagulation and biological process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117129. [PMID: 36584456 DOI: 10.1016/j.jenvman.2022.117129] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The effectiveness of a three-stage pilot approach using adsorption (AD), electrocoagulation (EC) and biological (BIO) processes for the treatment of raw sanitary landfill leachate (SLL) was investigated. SLL is loaded with hazardous substances such as organic load and heavy metals with high ammonium nitrogen (NH4+-N) concentrations and is also produced in large quantities, causing serious risks to both living organisms and the environment. In this study, column adsorption experiments were initially performed to examine the removal of toxic NH4+-N using different initial NH4+-N concentrations and recirculation flow rates. The adsorption process was then examined as a pre-treatment step in two sequential treatment scenarios, i.e., AD-EC-BIO and AD-BIO-EC, to determine which achieved the highest removal of pollutants and leachate toxic potential, thus ensuring the biosafety of these processes during the release of the respective effluents into surface waters. The overall removal efficiencies of NH4+-N, color, dissolved chemical oxygen demand (d-COD), manganese (Mn), nickel (Ni), zinc (Zn) and iron (Fe) achieved after the application of the AD-EC-BIO system were 95.5 ± 0.1%, 98.8 ± 0.1%, 85.7 ± 0.8%, 100 ± 0.1%, 71.4 ± 1.7%, 63.8 ± 1.9% and 94.2 ± 0.2%, respectively, while the values for the AD-BIO-EC system were 98.5 ± 0.2%, 98.7 ± 0.1%, 85.7 ± 0.4%, 98.9 ± 1.2%, 67.7 ± 1.7%, 76.1 ± 1.6% and 94.8 ± 0.1%, respectively. In accordance with the latter, the assessment of leachate toxic potential using a Thamnocephalus platyurus bioassay revealed that the AD-EC-BIO system could be considered a promising treatment strategy for the purification of raw SLL.
Collapse
Affiliation(s)
- C Genethliou
- Department of Chemical Engineering, University of Patras, GR-26504, Rion, Patras, Greece
| | - T Tatoulis
- Department of Environmental Engineering, University of Patras, 2 G. Seferi Str., GR-30100, Agrinio, Greece
| | - N Charalampous
- Department of Biology, University of Patras, GR-26500, Rion, Patras, Greece
| | - S Dailianis
- Department of Biology, University of Patras, GR-26500, Rion, Patras, Greece
| | - A G Tekerlekopoulou
- Department of Environmental Engineering, University of Patras, 2 G. Seferi Str., GR-30100, Agrinio, Greece.
| | - D V Vayenas
- Department of Chemical Engineering, University of Patras, GR-26504, Rion, Patras, Greece; Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), GR-26504, Patras, Greece
| |
Collapse
|