1
|
Ngo HTT, Hang NTT, Nguyen XC, Nguyen NTM, Truong HB, Liu C, La DD, Kim SS, Nguyen DD. Toxic metals in rice among Asian countries: A review of occurrence and potential human health risks. Food Chem 2024; 460:140479. [PMID: 39053271 DOI: 10.1016/j.foodchem.2024.140479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Heavy metals such as cadmium (Cd), arsenic (As), and lead (Pb) pose significant health risks, particularly in Asia, where rice is a staple for nearly three billion people. Despite their known dangers and environmental prevalence, studies addressing their concentrations in rice across different regions and the associated health implications remain insufficient. This review systematically examines the occurrence and impact of these toxic elements, filling a critical gap in the literature. Data from seven countries indicate mean concentrations in the order of Pb > As>Cd, with values of 0.255 ± 0.013, 0.236 ± 0.317, and 0.136 ± 0.150 mg/kg, respectively. Uncertainty analysis shows extensive variability, especially for Cd, with a 95% confidence interval range from 0.220 to 0.992 mg/kg. The typical daily intake of heavy metals through rice consumption, in the order of As>Cd > Pb, frequently exceeds safe limits. Generally, data obtained from various studies showed that children were more prone to heavy metal contamination through rice consumption than adults. This review is fundamental for ongoing monitoring, future research, and management strategies to reduce heavy metal contamination in rice.
Collapse
Affiliation(s)
- Hien Thi Thu Ngo
- Faculty of Health Sciences, Thang Long University, Hanoi 100000, Viet Nam
| | - Nguyen Thi Thuy Hang
- Faculty of Environment, University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Xuan Cuong Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Ngoc Thi Minh Nguyen
- Faculty of Public Health, Haiphong University of Medicine and Pharmacy, Hai Phong 180000, Viet Nam
| | - Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Chong Liu
- Department of Chemical & Materials Engineering, University of Auckland, 0926, New Zealand
| | - Duc Duong La
- Institute of Chemistry and Materials, 17 Hoang Sam, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Sung Su Kim
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
2
|
Ren J, Feng P, Batchelor WD, Hu K, Liu H, Lv S. Ground Cover Rice Production System Affects Soil Water, Nitrogen Dynamics and Crop Growth Differentially with or without Climate Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3866. [PMID: 38005763 PMCID: PMC10674629 DOI: 10.3390/plants12223866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
The ground cover rice production system (GCRPS) has been proposed as a potential solution to alleviate seasonal drought and early low-temperature stress in hilly mountainous areas; clarifying its impact on crop growth is crucial to enhance rice productivity in these areas. A two-year (2021-2022) field experiment was conducted in the hilly mountains of southwest China to compare the effects of the traditional flooding paddy (Paddy) and GCRPS under three different nitrogen (N) management practices (N1, zero-N fertilizer; N2, 135 kg N ha-1 as a urea-based fertilizer; and N3, 135 kg N ha-1 with a 3:2 base-topdressing ratio as urea fertilizer for the Paddy or a 1:1 basal application ratio as urea and manure for GCRPS) on soil water storage, soil mineral N content and crop growth parameters, including plant height, tiller numbers, the leaf area index (LAI), aboveground dry matter (DM) dynamics and crop yield. The results showed that there was a significant difference in rainfall between the two growth periods, with 906 mm and 291 mm in 2021 and 2022, respectively. While GCRPS did not significantly affect soil water storage, soil mineral N content, and plant height, it led to a reduction in partial tiller numbers (1.1% to 31.6%), LAI (0.6% to 20.4%), DM (4.4% to 18.8%), and crop yield (7.4% to 22.0%) in 2021 (wet year) compared to the Paddy. However, in 2022 (dry year), GCRPS led to an increase in tiller numbers (13.7% to 115.4%), LAI (17.3% to 81.0%), DM (9.0% to 62.6%), and crop yield (2.9% to 9.2%) compared to the Paddy. Structural equation modeling indicated that GCRPS significantly affected tiller numbers, plant height, LAI, DM, and productive tiller numbers, which indirectly influenced crop yield by significantly affecting tiller numbers and productive tiller numbers in 2022. Overall, the effects of GCRPS on soil water and N dynamics were not significant. In 2021, with high rainfall, no drought, and no early, low-temperature stress, the GCRPS suppressed crop growth and reduced yield, while in 2022, with drought and early low-temperature stress and low rainfall, the GCRPS promoted crop growth and increased yield, with tiller numbers and productive tiller numbers being the key factors affecting crop yield.
Collapse
Affiliation(s)
- Jian Ren
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (J.R.); (P.F.)
| | - Puyu Feng
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (J.R.); (P.F.)
| | | | - Kelin Hu
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (J.R.); (P.F.)
| | - Haitao Liu
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.L.); (S.L.)
| | - Shihua Lv
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.L.); (S.L.)
| |
Collapse
|
3
|
Irshad MK, Zhu S, Javed W, Lee JC, Mahmood A, Lee SS, Jianying S, Albasher G, Ali A. Risk assessment of toxic and hazardous metals in paddy agroecosystem by biochar-for bio-membrane applications. CHEMOSPHERE 2023; 340:139719. [PMID: 37549746 DOI: 10.1016/j.chemosphere.2023.139719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Toxic and carcinogenic metal (loid)s, such arsenic (As) and cadmium (Cd), found in contaminated paddy soils pose a serious danger to environmental sustainability. Their geochemical activities are complex, making it difficult to manage their contamination. Rice grown in Cd and As-polluted soils ends up in people's bellies, where it can cause cancer, anemia, and the deadly itai sickness. Solving this issue calls for research into eco-friendly and cost-effective remediation technology to lower rice's As and Cd levels. This research delves deeply into the origins of As and Cd in paddy soils, as well as their mobility, bioavailability, and uptake mechanisms by rice plants. It also examines the current methods and reactors used to lower As and Cd contamination in rice. Iron-modified biochar (Fe-BC) is a promising technology for reducing As and Cd toxicity in rice, improving soil health, and boosting rice's nutritional value. Biochar's physiochemical characteristics are enhanced by the addition of iron, making it a potent adsorbent for As and Cd ions. In conclusion, Fe-BC's biomembrane properties make them an attractive option for remediating As- and Cd-contaminated paddy soils. More efficient mitigation measures, including the use of biomembrane technology, can be developed when sustainable agriculture practices are combined with these technologies.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan; Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Sihang Zhu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing, China; Agricultural Management Institute, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wasim Javed
- Punjab Bioenergy Institute, University of Agriculture Faisalabad, Pakistan
| | - Jong Cheol Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Abid Mahmood
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea.
| | - Shang Jianying
- Department of Soil and Water Sciences China Agricultural University, Beijing, China.
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Atif Ali
- Department of plant breeding and genetics, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
4
|
Zheng X, Hong J, Zhang J, Gao Y, Li P, Yuan J, Li G, Xing C. Arsenic Contents, Speciation and Toxicity in Germinated Rice Alleviated by Selenium. Foods 2023; 12:2712. [PMID: 37509804 PMCID: PMC10378981 DOI: 10.3390/foods12142712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Rice can accumulate more organic and inorganic arsenic (iAs) than other crop plants. In this study, the localization of As in rice grains was investigated using High Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry (HPLC-ICP-MS) based on 26 rice varieties collected from two provinces. In all the samples, the total As contents in polished rice were 0.03-0.37 mg/kg, with average values of 0.28 and 0.21 mg/kg for two sample sets. The results of the determination of arsenic speciation in different components of rice grain showed that in the polished and brown rice the mean value of arsenite (As(III)) was nearly twice than that of arsenate (As(V)). The regional difference was observed in both total As contents and As speciation. The reason may be that As(III) is more mobile than As(V) in a dissociated form and because of soil properties, rice varieties, and the growing environment. The proportion of iAs and the total As in rice bran was higher than that in polished rice, and this is because As tends accumulate between the husk and the endosperm. In our study, selenium could alleviate the risk of arsenic toxicity at the primary stage of rice growth. Co-exposure to As and Se in germinated rice indicated that the reduction in As accumulation in polished rice reached 73.8%, 76.8%, and 78.3% for total As, As(III), and As(V) when compared with rice treated with As alone. The addition of Se (0.3 mg/kg) along with As significantly reduced the As amount in different parts of germinated rice. Our results indicated that Se biofortification could alleviate the As accumulation and toxicity in rice crops.
Collapse
Affiliation(s)
- Xin Zheng
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jing Hong
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jingyi Zhang
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yulong Gao
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Peng Li
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jian Yuan
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Guanglei Li
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Changrui Xing
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
5
|
Martín-Franco C, Sánchez JT, Alvarenga P, Peña D, Fernández-Rodríguez D, Vicente LA, Albarrán Á, López-Piñeiro A. Effects of fresh and field-aged holm-oak biochar on As, Cd and Pb bioaccumulation in different rice growing environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:164012. [PMID: 37169192 DOI: 10.1016/j.scitotenv.2023.164012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Arsenic, Cd, and Pb environmental fate is influenced when the traditional permanent flooding rice production systems are replaced by water-saving and soil conservation practices, urging for additional strategies that avoid their bioaccumulation in rice grain. The aim of this two-years field study was to evaluate the effects of fresh and field-aged biochar on As, Cd, and Pb bioaccumulation, and on As speciation, in rice grain produced in different growing environments (flooding versus sprinkler and conventional tillage versus direct seeding). Biochar produced from holm-oak pruning residues (pyrolysis at 550 °C, 48 h), in a single application (28 Mg ha-1), reduced As bioaccumulation in rice grain in the permanent flooding system to non-quantifiable concentrations (e.g., from 0.178 mg kg-1 to <0.04 mg kg-1, for inorganic-As, respectively), an effect which remained under field-aging conditions, increasing rice commercial value. When adopting sprinkler irrigation, the undesirable increase in Cd bioaccumulation in rice, relatively to the anaerobic system, was counteracted by biochar application, reducing its bioaccumulation in kernels between 32 and 80 %, allowing a simultaneous control of metals and metalloids bioaccumulation in rice. The bioaccumulation of Pb was also prevented with biochar application, with a reduction in its concentration four- to 13-times, in all the management systems, relatively to the non-amended plots, under fresh biochar effects. However, Pb immobilization decreased with biochar field-aging, indicating that the biochar application may have to be repeated to maintain the same beneficial effect. Therefore, the present study shows that the implementation of sprinkler irrigation with holm-oak biochar could reduce the risk of heavy metals(loids) bioaccumulation in rice grains and, thereby, ensuring food safety aspects, particularly under fresh biochar effects.
Collapse
Affiliation(s)
- Carmen Martín-Franco
- Área de Edafología y Química Agrícola, Facultad de Ciencias - IACYS, Universidad de Extremadura, Badajoz, Spain
| | - Jaime Terrón Sánchez
- Área de Producción Vegetal, Escuela de Ingenierías Agrarias - IACYS, Universidad de Extremadura, Badajoz, Spain
| | - Paula Alvarenga
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal.
| | - David Peña
- Área de Edafología y Química Agrícola, Escuela de Ingenierías Agrarias- IACYS, Universidad de Extremadura, Ctra de Cáceres, 06071 Badajoz, Spain
| | - Damián Fernández-Rodríguez
- Área de Producción Vegetal, Escuela de Ingenierías Agrarias - IACYS, Universidad de Extremadura, Badajoz, Spain
| | - Luis Andrés Vicente
- Área de Edafología y Química Agrícola, Facultad de Ciencias - IACYS, Universidad de Extremadura, Badajoz, Spain
| | - Ángel Albarrán
- Área de Producción Vegetal, Escuela de Ingenierías Agrarias - IACYS, Universidad de Extremadura, Badajoz, Spain
| | - Antonio López-Piñeiro
- Área de Edafología y Química Agrícola, Facultad de Ciencias - IACYS, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|