1
|
Wei Y, Yu J, Haider FU, Zhang Q, Chu R, Liqun C. Integrated removal of chromium, lead, and cadmium using nano-zero-valent iron-supported biochar: Mechanistic insights and eco-toxicity assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117532. [PMID: 39765113 DOI: 10.1016/j.ecoenv.2024.117532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 01/26/2025]
Abstract
The contamination of water and soil by heavy metals (HMs) is a global issue that should be given much more concern. Modified nano-zero-valent iron (nZVI) composites offer an effective strategy for HMs remediation, but few studies have focused on removing coexisting HMs and the eco-toxicity of the composite. In this study, corn straw biochar-supported nZVI composites (nZVI-BC) were synthesized, characterized and used for the removal of Cr6 +, Pb2+, and Cd2+ in single and multi-system at different composites dosages, metal concentrations, and solution pH. This study indicated that the composites exhibited enhanced removal capacities for Cr6+, Pb2+, and Cd2+ (respectively 82.24, 737.2, and 545.28 mg g-1), which were considerably superior to those observed with the sole application of biochar (0.05, 89.88, and 108.49 mg g-1) and nZVI (39.8, 297.35, and 191.02 mg g-1). Results of the remediation application of the composites to multi-metal systems revealed that intricate interplay existed between coexisting HMs, which hindered the simultaneous removal effect. The coexistence of Cr6+ and Cd2+ decreased both removal efficiencies by 58.16 % and 14.06 % at high Cr6+ levels, respectively, while the coexistence of Cd2+ and Pb2+ resulted in a decrease in Cd2+ removal efficiency by 14.3 %. An in-depth characterization of the underlying adsorption mechanism was performed by using kinetic and isotherms models such as Pseudo-first-order, Pseudo-second-order, Langmuir and Freundlich, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analysis. Each HM exhibited a distinct adsorption mechanism. The primary removal processes for Cr6+ and Pb2+ involved adsorption, reduction, and precipitation, whereas Cd2+ was mainly removed by adsorption and precipitation. Eco-toxicity experiments revealed that nZVI-BC enhanced pak choi (Brassica rapa L.) seeds germination (13.32, 17.22, and 23.33 %) and vigor indexes (1.22, 1.44, and 1.15) under Cr6+, Pb2+, and Cd2+ contamination, respectively. Nevertheless, an observed shift in toxicity occurred when the composites dosage for Cr6+, Pb2+, and Cd2+ exceeded 2, 4, and 4 g L-1, respectively, thereby instigating adverse effects on the early stages of plant growth. This work elucidates the removal mechanism and intricate reactions between co-existing HMs, highlighting the potential of nZVI-BC as a remediation strategy for HMs contamination.
Collapse
Affiliation(s)
- Yuzhen Wei
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jialu Yu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Qinhu Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Run Chu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
2
|
Namakka M, Rahman MR, Bin Mohamad Said KA, Muhammad A. Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications. RSC Adv 2024; 14:30411-30439. [PMID: 39318464 PMCID: PMC11420651 DOI: 10.1039/d4ra03507k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
The growing threat of environmental pollution to global environmental health necessitates a focus on the search for sustainable wastewater remediation materials coupled with innovative remediation strategies. Nano and micro zero-valent iron materials have attracted substantial researchers' attention due to their distinct physiochemical properties. This review article delves into novel micro- and nano-zero valent iron (ZVI) materials, analysing their synthesis methods, and exploring their multifaceted potential as a powerful tool for environmental remediation. This analysis contributes to the ongoing search of effective solutions for environmental remediation. Synthesis techniques are analysed based on their efficacy, scalability, and environmental impact, providing insights into existing methodologies, current challenges, and future directions for optimisation. Factors influencing ZVI materials' physicochemical properties and multifunctional engineering applications, including their role in wastewater and soil remediation, are highlighted. Environmental concerns, pros and cons, and the potential industrial applications of these materials are also discussed, accenting the importance of understanding the synthesis methods, materials' applications and their impacts on humans and the environment. The review is designed to provide insights into nano-and micro-ZVI materials, and their potential engineering applications, as well as guide researchers in the choice of ZVI materials' synthesis methods from a variety of nanoparticle synthesis strategies fostering nexus between these methods and industrial applications.
Collapse
Affiliation(s)
- Murtala Namakka
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak 94300 Kota Samarahan Malaysia
- Ahmadu Bello University Zaria Kaduna state Nigeria
| | - Md Rezaur Rahman
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak 94300 Kota Samarahan Malaysia
| | - Khairul Anwar Bin Mohamad Said
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak 94300 Kota Samarahan Malaysia
| | - Adamu Muhammad
- Nigerian National Petroleum Corporation Limited, NNPCl Nigeria
| |
Collapse
|
3
|
Li M, Zhou J, Cheng Z, Ren Y, Liu Y, Wang L, Cao L, Shen Z. Pollution levels and probability risk assessment of potential toxic elements in soil of Pb-Zn smelting areas. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:165. [PMID: 38592368 DOI: 10.1007/s10653-024-01933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Soil pollution around Pb-Zn smelters has attracted widespread attention around the world. In this study, we compiled a database of eight potentially toxic elements (PTEs) Pb, Zn, Cd, As, Cr, Ni, Cu, and Mn in the soil of Pb-Zn smelting areas by screening the published research papers from 2000 to 2023. The pollution assessment and risk screening of eight PTEs were carried out by geo-accumulation index (Igeo), potential ecological risk index (PERI) and health risk assessment model, and Monte Carlo simulation employed to further evaluate the probabilistic health risks. The results suggested that the mean values of the eight PTEs all exceeded the corresponding values in the upper crust, and more than 60% of the study sites had serious Pb and Cd pollution (Igeo > 4), with Brazil, Belgium, China, France and Slovenia having higher levels of pollution than other regions. Besides, PTEs in smelting area caused serious ecological risk (PERI = 10912.12), in which Cd was the main contributor to PREI (86.02%). The average hazard index (HI) of the eight PTEs for adults and children was 7.19 and 9.73, respectively, and the average value of total carcinogenic risk (TCR) was 4.20 × 10-3 and 8.05 × 10-4, respectively. Pb and As are the main contributors to non-carcinogenic risk, while Cu and As are the main contributors to carcinogenic risk. The probability of non-carcinogenic risk in adults and children was 84.05% and 97.57%, while carcinogenic risk was 92.56% and 79.73%, respectively. In summary, there are high ecological and health risks of PTEs in the soil of Pb-Zn smelting areas, and Pb, Cd, As and Cu are the key elements that cause contamination and risk, which need to be paid attention to and controlled. This study is expected to provide guidance for soil remediation in Pb-Zn smelting areas.
Collapse
Affiliation(s)
- Mingyue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinyang Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhiwen Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuanyang Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yawei Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Linling Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liu Cao
- Jiyuan Industrial and Urban Integration Demonstration Zone Ecological Environment Bureau, Jiyuan, 459000, China
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
4
|
Liu N, Gao R, Xiao S, Xue B. Visualizing the bibliometrics of biochar research for remediation of arsenic pollution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119513. [PMID: 37944320 DOI: 10.1016/j.jenvman.2023.119513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Arsenic-contamination of soil and water has always been a topic of considerable concern, and the potential of biochar for remediation of arsenic contamination has been widely recognized due to its advantages, including abundant sources, simple preparation, large surface area, significant pore size, and rich functional groups. To gain insights into the development trends in this field and provide suggestions for future research directions, scientometric analysis was conducted on articles sourced from the Web of Science core collection database by using the CiteSpace and VOSviewer software. In total, 637 bibliographic records, retrieved using the keywords "biochar" and "arsenic" were analyzed based on publication distribution over the years, contributing countries, keywords, authors, cited authors, publishing journals, and highly cited articles. Further, progress maps were generated from these data sets to assess the current research landscape. Results revealed a steady increase in annual publications since 2009, and China has the most publications. Notably, Daniel C. W. Tsang stood out as a representative author. The journal "Science of the Total Environment" published the most articles related to biochar and arsenic. "Adsorption" is the most frequently occurring keyword. The investigations of the impact and mechanism of biochar and modified biochar on inorganic arsenic removal from water and immobilization in soil have been identified as current research focal points. In order to realize the efficient and safe use of biochar, the future necessitates the implementation of advanced technology to conduct further comprehensive research. This study highlights the ongoing advancements in the research field on biochar and arsenic. Valuable insights are provided for future researchers and policymakers to guide their significant efforts toward addressing the issue of soil and water contamination caused by arsenic and exploring the potential of biochar for effective remediation strategies.
Collapse
Affiliation(s)
- Na Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Ruili Gao
- School of Agriculture, Ningxia University, Yinchuan, 750021, China.
| | - Shuai Xiao
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Bin Xue
- School of Ecology and Environment, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
5
|
Wang Z, Zhang Y, Sun S, Hu J, Zhang W, Liu H, He H, Huang J, Wu F, Zhou Y, Huang F, Chen L. Effects of four amendments on cadmium and arsenic immobilization and their exposure risks from pakchoi consumption. CHEMOSPHERE 2023; 340:139844. [PMID: 37597626 DOI: 10.1016/j.chemosphere.2023.139844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Exposure to heavy metal(loid)s (HM) through contaminated food chains poses significant health risks to humans. While soil amendments are known to reduce HM bioavailability, their effects on bioaccessibility and health risks in soil-pakchoi-human systems remain unclear. To address this knowledge gap, we conducted a greenhouse pot experiment coupling soil immobilization with bioaccessibility-based health risk assessment for Cd and As exposure from pakchoi consumption. Four amendments (attapulgite, shell powder, nanoscale zero-valent iron, and biochar) were applied to soil, resulting in changes to soil characteristics (pH and organic matter), plant dry weight, and exchangeable fractions of As and Cd. Among the tested amendments, biochar exhibited the highest effectiveness in reducing the risk of Cd and As exposure from pakchoi consumption. The bioaccessibility-based health risk assessment revealed that the application of 5% biochar resulted in the lowest hazard index, significantly decreasing it from 1.36 to 0.33 in contaminated soil. Furthermore, the structural equation model demonstrated that pH played a critical role in influencing remediation efficiency, impacting the exposure of the human body to Cd and As. In conclusion, our study offers a new perspective on mitigating exposure risks of soil HM and promoting safe crop production. The results underscore the importance of considering bioaccessibility in health risk assessment and highlight the potential of biochar as a promising amendment for reducing Cd and As exposure from pakchoi consumption.
Collapse
Affiliation(s)
- Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Yiping Zhang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Shiyong Sun
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Jinzhao Hu
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Wanming Zhang
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Hui Liu
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Huanjuan He
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Jingqiu Huang
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Fang Wu
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Ying Zhou
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Fengyu Huang
- College of Environment and Resource, Xichang University, Xichang, 615000, China; NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, 621010, China.
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
6
|
Soares MB, Duckworth OW, Stýblo M, Cable PH, Alleoni LRF. Pyrolysis temperature and biochar redox activity on arsenic availability and speciation in a sediment. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132308. [PMID: 37639794 PMCID: PMC10528781 DOI: 10.1016/j.jhazmat.2023.132308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/28/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
Biochar is widely used for water and soil remediation in part because of its local availability and low production cost. However, its effectiveness depends on physicochemical properties related to its feedstock and pyrolysis temperature, as well as the environmental conditions of its use site. Furthermore, biochar is susceptible to natural aging caused by changes in soil or sediment moisture, which can alter its redox properties and interactions with contaminants such as arsenic (As). In this study, we investigated the effect of pyrolysis temperature and biochar application on the release and transformations of As in contaminated sediments subjected to redox fluctuations. Biochar application and pyrolysis temperature played an important role in As species availability, As methylation, and dissolved organic carbon concentration. Furthermore, successive flooding cycles that induced reductive conditions in sediments increased the As content in the solution by up to seven times. In the solid phase, the application of biochar and the flooding cycle altered the spatial distribution and speciation of carbon, iron (Fe) and As. In general, the application of biochar decreased the reduction of Fe(III) and As(V) after the first cycle of flooding. Our results demonstrate that the flooding cycle plays an important role in the reoxidation of biochar to the point of enhancing the immobilization of As.
Collapse
Affiliation(s)
- Matheus B Soares
- Department of Soil Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), 13418900 Piracicaba, SP, Brazil; Department of Crop and Soil Sciences, North Carolina State University, 27695 Raleigh, NC, USA.
| | - Owen W Duckworth
- Department of Crop and Soil Sciences, North Carolina State University, 27695 Raleigh, NC, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 27599-7461 Chapel Hill, NC, USA
| | - Peter H Cable
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 27599-7461 Chapel Hill, NC, USA
| | - Luís R F Alleoni
- Department of Soil Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), 13418900 Piracicaba, SP, Brazil
| |
Collapse
|
7
|
Chen M, Zhou Y, Sun Y, Chen X, Yuan L. Coal gangue-based magnetic porous material for simultaneous remediation of arsenic and cadmium in contaminated soils: Performance and mechanisms. CHEMOSPHERE 2023; 338:139380. [PMID: 37394193 DOI: 10.1016/j.chemosphere.2023.139380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Remediation of arsenic (As) and cadmium (Cd) co-contaminated soil is a challenge in environmental remediation. In this study, coal gangue-based magnetic porous material (MPCG) was designed for simultaneous immobilization of As and Cd in contaminated soil. After the incubation experiment, the effects of CG and MPCG on the availability and fractions of As and Cd and the related microbial functional genes were analyzed to explore the potential remediation mechanisms of MPCG for As and Cd in contaminated soil. The results showed that the stabilization effect of MPCG on As and Cd was significantly higher than that of coal gangue. It reduced the available As and Cd by 17.94-29.81% and 14.22-30.41%, respectively, and transformed unstable As/Cd to stable. The remediation mechanisms of MPCG on As included adsorption, oxidation, complexation and precipitation/co-precipitation. Meanwhile, the remediation mechanisms of MPCG for Cd included adsorption, ion exchange, complexation and precipitation. In addition, MPCG increases the abundance of sulfate-reducing bacteria (dsrA) by 43.39-381.28%, which can promote sulfate reduction. The sulfide can precipitate with As and Cd to reduce the availability of As and Cd in soil. Thus, MPCG is a promising amendment for achieving the remediation of As and Cd co-contaminated soil.
Collapse
Affiliation(s)
- Min Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; Research Institute of Zhejiang University-Taizhou, Zhejiang University, Taizhou, China
| | - Yuzhi Zhou
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area with High Groundwater Level, Huainan, 232001, China
| | - Yuan Sun
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; Research Institute of Zhejiang University-Taizhou, Zhejiang University, Taizhou, China
| | - Xiaoyang Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area with High Groundwater Level, Huainan, 232001, China.
| | - Liang Yuan
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China.
| |
Collapse
|