1
|
Hou M, Gu X, Lai W, Fan Y, Sun S, Yan P, Zhang Y, Zheng X, He S. Sulfur-iron interactions forming activated Fe xS y pool in-situ to synergistically improve nitrogen removal in denitrification system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 388:126047. [PMID: 40449443 DOI: 10.1016/j.jenvman.2025.126047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/22/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
Sulfur-iron coupling has received increasing attention for improving nitrogen removal. However, the boosting mechanisms of denitrification in sulfur-iron coupling biological system are still ambiguous, and no reasonable explanation has been given for the mismatch between the amount of S0 loss and the amount of SO42- produced in the coupling system. Therefore, this study established sulfur-iron coupling denitrification systems, and investigated the nitrogen removal performances and coupling mechanisms of the systems. The research results showed that the TN removal efficiencies of the sulfur-iron coupling systems were 122.73-149.27 % higher than those of the single electron donor systems. In the process of nitrogen removal, about 26.03-35.32 % of the more leached S0 and Fe0 in the coupling systems co-precipitated to form activated FexSy pool in-situ, contributing about 25.41 % of the nitrogen removal and allowing the systems to remove 76.32-100 % of TN without external electron donors; moreover, the oxidation process of S2- provided electrons for the reduction of Fe (Ⅲ) to Fe (Ⅱ), generating more electron donors. Metagenomic sequencing results showed significant increases in the richness and diversity of functional microorganisms associated with sulfur and iron autotrophic denitrification in the coupling systems, and their contributions to the key genes in the denitrification, sulfur transformation and iron cycle processes increased substantially. In general, this study offered deeper understanding for assessing the nitrogen removal potential of the sulfur-iron coupling system, as well as investigating the interactions between S0 and Fe0 and elucidating nitrogen removal pathways within the system.
Collapse
Affiliation(s)
- Mingxiu Hou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Wenyan Lai
- Suzhou Genji Technology Co., Ltd., Suzhou, 215000, PR China
| | - Yuanyuan Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yu Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xiangyong Zheng
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
2
|
Li M, Wei S, Wang R, Zhao X, Yan P, Zhang J, Liu H, Hu Z, Wu H. Enhanced nitrogen removal in constructed wetlands filled with iron-carbon substrates: Reexploring unique roles of iron-cycling and electroactive microorganisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125344. [PMID: 40233613 DOI: 10.1016/j.jenvman.2025.125344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/14/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025]
Abstract
Bacteria involved in iron cycle and electroactivity are commonly found in intensified constructed wetlands (CWs) with iron-carbon substrates. However, their roles in nitrogen (N) removal remain unclear. Here, two types of CWs with different filling modes (separate and mixed) of sponge iron and biochar substrates under micro-oxygen regulation (2 h/d, 60 mL min-1) were constructed for nitrogen removal for 240 days. The results revealed that CWs amended with iron-biochar substrates separately (CW-D) achieved a higher total nitrogen removal performance (81 %) and lower greenhouse gas emission (global warming potential reduced by 3.07 × 105 μg CO2-eq m-2h-1) compared with Fe-C micro-electrolysis CWs (CW-E). In this process, although 41 genera of nitrogen-transforming bacteria (NTB) were detected in CWs, no NTB members had a significant difference (P < 0.05) in relative abundance between CW-D and CW-E. However, 11 genera of iron-cycling bacteria (ICB, e.g. Pseudomonas) with electroactive and 5 genera of electroactive bacteria (EAB, e.g. Tetrasphaera) were significantly enriched in CW-D and CW-E, respectively, both showing significant negative correlations (P < 0.05) with NO2--N content. It indicated that ICB and EAB rather than specific NTB members were decisive in N removal in iron and carbon CWs in low C/N ratio wastewater treatment and regulated by filling modes. Our findings expand the knowledge of the application of iron and carbon substrates in CWs and provide an initial assessment of the effect of different filling modes of iron and carbon on nitrogen removal in CWs.
Collapse
Affiliation(s)
- Mingjun Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Shiyuan Wei
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Ruigang Wang
- Shanxi Laboratory for Yellow River, College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, PR China
| | - Xin Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China; College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Peihao Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, PR China
| | - Huaqing Liu
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
3
|
Yan G, Qiao C, Liu Z, Bohu T, Wang J, Zhang G, Bai Z, Zhuang X. Fugitive gases reduction and carbon sequestration potential of ecological floating beds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125341. [PMID: 40262495 DOI: 10.1016/j.jenvman.2025.125341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/15/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
Ecological floating beds (EFBs) are widely utilized as a green, cost-effective, and efficient technology for biologicalwater treatment in ponds, rivers, and secondary treatment of wastewater plant effluents. However, their potential for greenhouse gas (GHG) absorption and transformation is often overlooked. This paper begins by summarizing the accounting and emission status of GHGs from wastewater treatment plants (WWTPs), reviewing plant-microbial interactions in the phyllosphere and rhizosphere, and exploring plant-microbial-mediated transformations of carbon and nitrogen cycles. Special attention is given to variations in carbon and nitrogen cycling intensities within the plant phyllosphere and rhizosphere under warm and humid conditions with elevated GHG concentrations. We propose an exploratory approach using Ecological Floating Beds-Greenhouse (EFBs-GH) to absorb and transform fugitive gases from biochemical tanks, while enhancing sewage treatment efficiency. The study investigates the advantages and potential of EFBs for carbon sequestration and efficiency improvement in WWTPs, aiming to provide technical solutions and theoretical foundations for reducing fugitive gas emissions, including GHGs and odorous gases, etc., from concentrated sources such as WWTPs.
Collapse
Affiliation(s)
- Gaojun Yan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Binzhou Institute of Technology, Binzhou, Shandong, 256600, China.
| | - Chisong Qiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Binzhou Institute of Technology, Binzhou, Shandong, 256600, China; Zhengzhou University, Zhengzhou, 450001, China.
| | - Ziyan Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tsing Bohu
- Xiongan Institute of Innovation, Xiongan New Area, 071000, China.
| | - Jiancheng Wang
- Binzhou Institute of Technology, Binzhou, Shandong, 256600, China.
| | | | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Zhang Y, Gu X, Sun S, Yan P, Fan Y, Xi Y, He S. Trade-off between electrochemical and microbial nutrient eliminations in iron anode-assisted constructed wetlands: The specificity of voltage level. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124623. [PMID: 39983578 DOI: 10.1016/j.jenvman.2025.124623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/02/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Holistic understanding of electrocatalytic behaviors and microbiological mechanisms respond to voltage level (VL) benefits constructing performance-pathway-community linkages in iron anode-assisted constructed wetlands (IACWs). Herein, five solar-driven IACWs at 0, 1, 5, 10, and 15 V were established to treat secondary effluent for 109 days across moderate to low water temperatures (WTs). Results showed that total nitrogen (TN) (4.87-54.42%) and total phosphorus (TP) (20.66-97.35%) removals both ascended as VL raised, which primarily occurred in the cathodic regions and anodic upstream, respectively. More sustainable nitrogen elimination was achieved at lower VLs (≤ 5 V). Electrochemical contribution quantification revealed that electrochemical denitrogenation strengthened as VL improved (144.3-965.7 mg m-2 d-1), whereas severe anodic hardening and cathodic clogging in later operation impaired the dominant electrochemical denitrification at higher VLs (≥ 10 V). In contrast, microbial denitrogenation followed hump-shaped variational pattern with rising VL (peaked at 5 V). Microbial community and function analyses further clarified that despite VL elevation induced denitrifying microbiota evolution and up-regulated functional gene abundance, microbial denitrification function was significantly constrained at higher VLs. Particularly, the highest network complexity (at 1 V) and modularity (at 5 V) bred IACWs to better withstand low WT and high iron concentration. Overall, 5 V balanced electrochemical and microbial denitrogenation to obtain persistently effective TN removal. Additionally, intensified electro-coagulation dephosphorization was verified to remove most TP via adsorption and co-precipitation. This work provided a preferred VL regulation strategy to facilitate in situ sustainable nutrient purification of low-polluted wastewater in IACWs.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanyuan Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yang Xi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| |
Collapse
|
5
|
Zhang L, Luo Y, Lv S, Liu Y, Wang R, Wang Y, Lin K, Liu L. Performance of electro-assisted ecological floating bed in antibiotics and conventional pollutants degradation: Mechanisms and microbial response. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124393. [PMID: 39919574 DOI: 10.1016/j.jenvman.2025.124393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
Electro-assisted technology is promising for enhancing plant activity, optimizing functional microbial communities, and significantly strengthening pollutant removal efficiency. In this study, four reactors were designed as control group (CG), Hydrocotyle vulgaris L. ecological floating bed (PEFB), microbial fuel cell (MFC), and Hydrocotyle vulgaris L. ecological floating bed-microbial fuel cell (PEFB-MFC) to investigate the efficiency and mechanisms for the synchronous removal of conventional and antibiotic contaminants. Results showed that PEFB-MFC hold superior removal performance for sulfamethoxazole (61%), tetracycline (61%), CODCr (65%), NH4+-N (86%), TN (41%), and TP (51%). High-throughput sequencing indicated that Pseudomonadota and Actinomycetota were the predominant phyla in the different reactors. Metagenomic sequencing results showed that pollutant degradation-related metabolic functions, such as those involved in carbohydrate and amino acid metabolism in PEFB-MFC exhibited superior abundance compared to the other reactors. LC-MS analysis revealed sulfamethoxazole degradation occurred through active-site cleavage, and tetracycline underwent demethylation, aldehyde formation, dehydroxylation. This study offers a deeper insight into electro-enhanced PEFB on decontamination performance and functional microbial communities.
Collapse
Affiliation(s)
- Liangjing Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 10012, China; School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yan Luo
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo, 315012, China
| | - Shucong Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 10012, China
| | - Yunlong Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 10012, China
| | - Rui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 10012, China
| | - Yu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 10012, China
| | - Kuixuan Lin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 10012, China
| | - Lusan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 10012, China; School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
6
|
Xu F, Peng Y, Gu X, Sun S, Li A, He S. Revealing sulfur-iron coupling mechanism for enhanced autotrophic denitrification in ecological floating beds. BIORESOURCE TECHNOLOGY 2024; 402:130800. [PMID: 38734259 DOI: 10.1016/j.biortech.2024.130800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
A sulfur-iron coupled ecological floating bed (EFB-SFe) was developed to enhance the denitrification capability of sulfur-based ecological floating beds (EFB-S). The denitrification performance, kinetic process and microbial community composition were explored. Results showed that sulfur-iron coupling effectively enhanced the denitrification performance of EFB, surpassing the sum of their individual effects. The average total nitrogen removal rate ranged from 1.56 to 4.56 g·m-2·d-1, with a removal efficiency of 22-84 %. The k value for the S + Fe group increased from 0.04 to 0.18 d-1 to 0.40-0.46 d-1 relative to the S group. The sulfur-iron coupling promoted the enrichment of denitrifying bacteria (Thiobacillus and Ferritrophicum). The denitrification genes in EFB-SFe were upregulated, being 12-22 times more abundant than in EFB-S. Sulfur and iron autotrophic denitrification were identified as the main nitrogen removal processes in EFB-SFe. Overall, sulfur-iron coupling showed the potential to enhance the denitrification capacity of EFB-S for treating low-pollution water.
Collapse
Affiliation(s)
- Feng Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Anqi Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| |
Collapse
|
7
|
Zhou X, Liu H, Fan X, Xu X, Gao Y, Bi X, Cheng L, Huang S, Zhao F, Yang T. Innovative inbuilt moving bed biofilm reactor for nitrogen removal applied in household aquarium. Front Microbiol 2024; 15:1373119. [PMID: 38694801 PMCID: PMC11062409 DOI: 10.3389/fmicb.2024.1373119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/27/2024] [Indexed: 05/04/2024] Open
Abstract
An innovative inbuilt moving bed biofilm reactor (MBBR) was created to protect fish from nitrogen in a household aquarium. During the 90 experimental days, the ammonia nitrogen (NH4+-N) concentration in the aquarium with the inbuilt MBBR was always below 0.5 mg/L, which would not threaten the fish. Concurrently, nitrite and nitrate nitrogen concentrations were always below 0.05 mg/L and 4.5 mg/L, respectively. However, the blank contrast aquarium accumulated 1.985 mg/L NH4+-N on the 16th day, which caused the fish to die. The suspended biofilms could achieve the specific NH4+-N removal rate of 45.43 g/m3/d. Biofilms presented sparsely with filamentous structures and showed certain degrees of roughness. The bacterial communities of the suspended biofilms and the sediment were statistically different (p < 0.05), reflected in denitrifying and nitrifying bacteria. In particular, the relative abundance of Nitrospira reached 1.4%, while the genus was barely found in sediments. The suspended biofilms showed potentials for nitrification function with the predicted sequence numbers of ammonia monooxygenase [1.14.99.39] and hydroxylamine dehydrogenase [EC:1.7.2.6] of 220 and 221, while the values of the sediment were only 5 and 1. This study created an efficient NH4+-N removal inbuilt MBBR for household aquariums and explored its mechanism to afford a basis for its utilization.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuejun Bi
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, Qingdao University of Technology, Qingdao, China
| | | | | | | | | |
Collapse
|
8
|
Ding S, Gu X, Sun S, He S. Optimization of microplastic removal based on the complementarity of constructed wetland and microalgal-based system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169081. [PMID: 38104829 DOI: 10.1016/j.scitotenv.2023.169081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/06/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
As one of the emblematic emerging contaminants, microplastics (MPs) have aroused great public concern. Nevertheless, the global community still insufficiently acknowledges the ecological health risks and resolution strategies of MP pollution. As the nature-based biotechnologies, the constructed wetland (CW) and microalgal-based system (MBS) have been applied in exploring the removal of MPs recently. This review separately presents the removal research (mechanism, interactions, implications, and technical defects) of MPs by a single method of CWs or MBS. But one thing with certitude is that the exclusive usage of these techniques to combat MPs has non-negligible and formidable challenges. The negative impacts of MP accumulation on CWs involve toxicity to macrophytes, substrates blocking, and nitrogen-removing performance inhibition. While MPs restrict MBS practical application by making troubles for separation difficulties of microalgal-based aggregations from effluent. Hence the combined strategy of microalgal-assisted CWs is proposed based on the complementarity of biotechnologies, in an attempt to expand the removing size range of MPs, create more biodegradable conditions and improve the effluent quality. Our work evaluates and forecasts the potential of integrating combination for strengthening micro-polluted wastewater treatment, completing the synergistic removal of MP-based co-pollutants and achieving long-term stability and sustainability, which is expected to provide new insights into MP pollution regulation and control.
Collapse
Affiliation(s)
- Shaoxuan Ding
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| |
Collapse
|
9
|
Peng Y, Gu X, Zhang M, Yan P, Sun S, He S. Simultaneously enhanced autotrophic-heterotrophic denitrification in iron-based ecological floating bed by plant biomass: Metagenomics insights into microbial communities, functional genes and nitrogen metabolic pathways. WATER RESEARCH 2024; 248:120868. [PMID: 37979568 DOI: 10.1016/j.watres.2023.120868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
In this study, the ecological floating bed supporting with zero-valent iron (ZVI) and plant biomass (EFB-IB) was constructed to improve nitrogen removal from low-polluted water. The effects of ZVI coupling with plant biomass on microbial community structure, metabolic pathways and functional genes were analyzed by metagenomic sequencing, and the mechanism for nitrogen removal was revealed. Results showed that compared with mono-ZVI system (EFB-C), the denitrification efficiencies of EFB-IB were effectively enhanced, with the higher average NO3--N removal efficiencies of 22.60-59.19%. Simultaneously, the average NH4+-N removal efficiencies were 73.08-91.10%. Metagenomic analyses showed that EFB-IB enriched microbes that involved in iron cycle, lignocellulosic degradation and nitrogen metabolism. Plant biomass addition simultaneously increased the relative abundances of autotrophic and heterotrophic denitrifying bacteria. Network analysis showed the cooperation between autotrophic and heterotrophic denitrifying bacteria in EFB-IB. Moreover, compared with EFB-C, plant biomass addition increased the relative abundances of genes related to iron cycle, lignocellulose degradation and glycolysis processes, ensuring the production of autotrophic and heterotrophic electron donors. Therefore, the relative abundances of key enzymes and functional genes related to denitrification were higher in EFB-IB, being beneficial to the NO3--N removal. Additionally, the correlation analysis of nitrogen removal and functional genes verified the synergistic mechanism of iron-based autotrophic denitrification and plant biomass-mediated heterotrophic denitrification in EFB-IB. In summary, plant biomass has excellent potential to improve the nitrogen removal of iron-based EFB from low-polluted water.
Collapse
Affiliation(s)
- Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
10
|
Wu Q, Chen Y, He Y, Cheng Q, Wu Q, Liu Z, Li Y, Yang Z, Tan Y, Yuan Y. Enhanced nitrogen and phosphorus removal by a novel ecological floating bed integrated with three-dimensional biofilm electrode system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119346. [PMID: 37866187 DOI: 10.1016/j.jenvman.2023.119346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/23/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
The ecological floating bed (EFB) has been used extensively for the purification of eutrophication water. However, the traditional EFB (T-EFB) often exhibits a decline in nitrogen and phosphorus removal because of the limited adsorption capacity of fillers and inadequate electron donors. In the present study, a series of electrolysis-ecological floating beds (EC-EFBs) were constructed to investigate the decontamination performance of conventional pollutants. EC-EFB outperformed T-EFB in terms of nitrogen and phosphorus removal. Its removal efficiency of total nitrogen and total phosphorus was 20.51-32.95% and 45.06-96.20%, which were higher than that in T-EFB.. Moreover, the plants in EC-EFB demonstrated higher metabolic activity than those in T-EFB. Under the electrolysis condition of 0.51 mA/cm2 for 24 h, the malondialdehyde content and superoxide dismutase activity in EC-EFB were 6.08 nmol/g and 22.61 U/g, which were significantly lower compared to T-EFB (38.65 nmol/g and 26.13 U/g). And the soluble protein content of plant leaves increased from 3.31 mg/g to 5.72 mg/g in EC-EFB. Microbial analysis revealed that electrolysis could significantly change the microbial community and facilitate the proliferation of nitrogen-functional microbes, such as Thermomonas, Hydrogenophaga, Deinococcus, and Zoogloea. It is important to highlight that the hydrogen evolution reaction at the cathode area facilitated phosphorus removal in EC-EFB, thereby inhibiting phosphorus leaching. This study provides a promising and innovative technology for the purification of eutrophic water.
Collapse
Affiliation(s)
- Qingyu Wu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Yang He
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Qiming Cheng
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Qiong Wu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Zhen Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yunqing Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Zhenmei Yang
- Jiangjin Ecological Environment Monitoring Station, Chongqing, 402260, China
| | - Yuqing Tan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ying Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| |
Collapse
|
11
|
Wu H, Li A, Gao S, Xing Z, Zhao P. The performance, mechanism and greenhouse gas emission potential of nitrogen removal technology for low carbon source wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166491. [PMID: 37633391 DOI: 10.1016/j.scitotenv.2023.166491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
Excessive nitrogen can lead to eutrophication of water bodies. However, the removal of nitrogen from low carbon source wastewater has always been challenging due to the limited availability of carbon sources as electron donors. Biological nitrogen removal technology can be classified into three categories: heterotrophic biological technology (HBT) that utilizes organic matter as electron donors, autotrophic biological technology (ABT) that relies on inorganic electrons as electron donors, and heterotrophic-autotrophic coupling technology (CBT) that combines multiple electron donors. This work reviews the research progress, microbial mechanism, greenhouse gas emission potential, and challenges of the three technologies. In summary, compared to HBT and ABT, CBT shows greater application potential, although pilot-scale implementation is yet to be achieved. The composition of nitrogen removal microorganisms is different, mainly driven by electron donors. ABT and CBT exhibit the lowest potential for greenhouse gas emissions compared to HBT. N2O, CH4, and CO2 emissions can be controlled by optimizing conditions and adding constructed wetlands. Furthermore, these technologies need further improvement to meet increasingly stringent emission standards and address emerging pollutants. Common measures include bioaugmentation in HBT, the development of novel materials to promote mass transfer efficiency of ABT, and the construction of BES-enhanced multi-electron donor systems to achieve pollutant prevention and removal. This work serves as a valuable reference for the development of clean and sustainable low carbon source wastewater treatment technology, as well as for addressing the challenges posed by global warming.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Sicong Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
12
|
Zhang Y, Sun S, Gu X, Yu Q, He S. Role of hydrophytes in constructed wetlands for nitrogen removal and greenhouse gases reduction. BIORESOURCE TECHNOLOGY 2023; 388:129759. [PMID: 37716572 DOI: 10.1016/j.biortech.2023.129759] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
With the prominence of global climate change and proposal of carbon reduction concept, how to maximize the comprehensive effect of nitrogen removal and greenhouse gases (GHGs) reduction in constructed wetlands (CWs) has become crucial. As indispensable biological component of CWs, hydrophytes have received extensive attention owing to their application potential. This review comprehensively evaluates the functions of hydrophytes in nitrogen removal and GHGs reduction in CWs in terms of plants themselves, plant-mediated microbes and plant residues (hydrophyte carbon sources and hydrophyte-derived biochars). On this basis, the strategies for constructing an ideal CW system are put forward from the perspective of full life-cycle utilization of hydrophytes. Finally, considering the variability of plant species composition in CWs, outlooks for future research are specifically proposed. This review provides guidance and novel perspectives for the full life-cycle utilization of hydrophytes in CWs, as well as for the construction of an ideal CW system.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingjiang Yu
- Daqing Water Group Company Limited, Daqing 163000, China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, China.
| |
Collapse
|
13
|
Chen X, Deng S, Ji B, Wu S, Chang J. Seasonal purification efficiency, greenhouse gas emissions and microbial community characteristics of a field-scale surface-flow constructed wetland treating agricultural runoff. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118871. [PMID: 37657292 DOI: 10.1016/j.jenvman.2023.118871] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
Controlling nonpoint source pollution (NPSP) is very important for protecting the water environment, and surface-flow constructed wetlands (SFCWs) have been widely established to mitigate NPSP loads. In this study, the pollutant removal efficiencies, greenhouse gas (GHG) emissions, and chemical and microbial community properties of the sediment in a large-scale SFCW established beside a plateau lake (Qilu Lake) in southwestern China to treat agricultural runoff were evaluated over a year. The SFCW performed best in terms of nitrogen removal in autumn (average efficiency of 63.5% at influent concentrations of 9.3-35.4 mg L-1) and demonstrated comparable efficiency in other seasons (23.7-40.0%). The removal rates of total phosphorus (TP) and chemical oxygen demand (COD) were limited (18.6% and 12.4% at influent concentrations of 1.1 and 45.5 mg L-1 on average, respectively). The SFCW was a hotspot of CH4 emissions, with an average flux of 31.6 mg m-2·h-1; moreover, CH4 emissions contributed the most to the global warming potential (GWP) of the SFCW. Higher CH4 and N2O fluxes were detected in winter and in the front-end section of the SFCW with high pollutant concentrations, and plant presence increased CH4 emissions. Significant positive relationships between nutrient and heavy metal contents in the SFCW sediment were detected. The microbial community compositions were similar in autumn and winter, with Thiobacillus, Lysobacter, Acinetobacter and Pseudomonas dominating, and this distribution pattern was clearly distinct from those in spring and summer, with high proportions of Spirochaeta_2 and Denitratisoma. The microbial co-occurrence network in spring was more complex with stronger positive correlations than those in winter and autumn, while it was more stable in autumn with more keystone taxa. Optimization of the construction, operation and management of SFCWs treating NPSP in lake watersheds is necessary to promote their environmental benefits.
Collapse
Affiliation(s)
- Xiaowan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Shengjiong Deng
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| | - Bohua Ji
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, 999078, China
| | - Suqing Wu
- Jiangxi Academy of Environmental Sciences, Nanchang, 330029, China
| | - Junjun Chang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
14
|
Gu X, Peng Y, Yan P, Fan Y, Zhang M, Sun S, He S. Microbial response to nitrogen removal driven by combined iron and biomass in subsurface flow constructed wetlands with plants of different ages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162692. [PMID: 36894080 DOI: 10.1016/j.scitotenv.2023.162692] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the nitrogen removal enhanced by combined iron scraps and plant biomass, and its microbial response in the wetland with different plant ages and temperatures. The results showed that older plants benefitted the efficiency and stability of nitrogen removal, which could reach 1.97 ± 0.25 g m-2 d-1 in summer and 0.42 ± 0.12 g m-2 d-1 in winter. Plant age and temperature were the main factors determining the microbial community structure. Compared with temperature, plant ages affected more significantly on relative abundance of microorganisms such as Chloroflexi, Nitrospirae, Bacteroidetes and Cyanobacteria, and functional genera for nitrification (e.g., Nitrospira) and iron reduction (e.g., Geothrix). The absolute abundance of total bacterial 16S rRNA ranged from 5.22 × 108 to 2.63 × 109 copies g-1 and presented extremely significant negative correlation to plant age, which would lead to a decline in microbial function on information storage and processing. The quantitative relationship further revealed that the ammonia removal was related to 16S rRNA and AOB amoA, while nitrate removal was controlled by 16S rRNA, narG, norB and AOA amoA jointly. These findings suggested that a mature wetland for nitrogen removal enhancement should focus on aging microbes caused by old plants and possible endogenous pollution.
Collapse
Affiliation(s)
- Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanyuan Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|