1
|
Piao M, Zhang J, Du H, Du H, Sun Y, Teng H. Cerium added corn-based biochar as particle electrode for electrochemical oxidation industrial wastewater. ENVIRONMENTAL TECHNOLOGY 2024; 45:4598-4606. [PMID: 37727140 DOI: 10.1080/09593330.2023.2260121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/09/2023] [Indexed: 09/21/2023]
Abstract
Three-dimensional (3D) electrochemical oxidation has become a popular advanced oxidation technology for wastewater treatment due to its various benefits. In this study, cerium (Ce) loaded biochar (Ce/BC) was used as a particle electrode to conduct the degradation of industrial wastewater released by the chemical industry. SEM, EDS, XRD, FTIR, XPS, and BET were used to characterize the properties of Ce/BC. The effects of some variables, including Ce loading (0-5%), pH (5-9), Ce/BC dosage (12.5-50.0 g/L), and working voltage (12-20 V), were evaluated with regard to COD elimination. The kinetics of COD oxidation and the energy consumption were carefully investigated. Tert-butanol significantly reduced the removal efficiency of COD, indicating that hydroxyl radicals generated during the process rather than direct electro-oxidation were the main mechanism for COD degradation. The treatment of industrial wastewater might benefit from the use of Ce/BC as particle electrode.
Collapse
Affiliation(s)
- Mingyue Piao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, People's Republic of China
- College of Engineering, Jilin Normal University, Siping, People's Republic of China
| | - Jing Zhang
- College of Engineering, Jilin Normal University, Siping, People's Republic of China
| | - Huishi Du
- College of Tourism and Geographical Science, Jilin Normal University, Siping, People's Republic of China
| | - Hongxue Du
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, People's Republic of China
| | - Yuwei Sun
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, People's Republic of China
- College of Engineering, Jilin Normal University, Siping, People's Republic of China
| | - Honghui Teng
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, People's Republic of China
- College of Engineering, Jilin Normal University, Siping, People's Republic of China
| |
Collapse
|
2
|
Li C, Qiu X, Wan H, Ma Z, Jin R, Zhao Y. Graphite-N reinforced sludge biochar electrode: A experimental and DFT theoretical analysis of efficient evolution and in-situ utilization of H 2O 2. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124107. [PMID: 38729509 DOI: 10.1016/j.envpol.2024.124107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Rational reuse of municipal sludge to produce electro-Fenton electrode can not only save resources, but also produce superior peroxide and degradation pollutants simultaneously. Herein, a novel electro-Fenton electrode derived from sludge biochar loaded on Ni foam (SBC@Ni) was constructed via high temperature pyrolysis and chemical coating for efficient H2O2 evolution and pollutant degradation. Systematic experiments and density functional theory calculations (DFT calculation) explained that the production of graphite C and graphite N during high-temperature pyrolysis of municipal sludge can greatly enhance the oxygen reduction reaction of SBC@Ni electrode and promote the evolution of H2O2. And the hybrid heterojunctions, such as FeP, also played a key role in electrocatalytic processes. Notably, the electrode still exhibited excellent performance after 1000 linear scans and 12 h of continuous current stimulation, which demonstrated the excellent stability of the electrode. Moreover, SBC@Ni electrode can not only effectively oxidize 4-chlorophenol through the electro-Fenton effect, but also fully mineralize organic matter, indicating promising environmental application. The free radical quenching experiment also revealed that the ·OH is the main active species for 4-CP degradation in SBC@Ni electro-Fenton system.
Collapse
Affiliation(s)
- Chenxi Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaojie Qiu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Huilin Wan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zehao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Ruotong Jin
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Liu E, Hu T, Al-Dhabi NA, Soyol-Erdene TO, Bayanjargal O, Zuo Y, Wang J, Tang W. MOF-derived Fe/Ni@C marigold-like nanosheets as heterogeneous electro-Fenton cathode for efficient antibiotic oxytetracycline degradation. ENVIRONMENTAL RESEARCH 2024; 247:118357. [PMID: 38325782 DOI: 10.1016/j.envres.2024.118357] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/02/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024]
Abstract
The widespread occurrence of organic antibiotic pollution in the environment and the associated harmful effects necessitate effective treatment method. Heterogeneous electro-Fenton (hetero-EF) has been regarded as one of the most promising techniques towards organic pollutant removal. However, the preparation of efficient cathode still remains challenging. Herein, a novel metal-organic framework (MOF)-derived Fe/Ni@C marigold-like nanosheets were fabricated successfully for the degradation of oxytetracycline (OTC) by serving as the hetero-EF cathode. The FeNi3@C (Fe/Ni molar ratio of 1:3) based hetero-EF system exhibited 8.2 times faster OTC removal rate than that of anodic oxidation and possessed many advantages such as excellent OTC degradation efficiency (95.4% within 90 min), broad environmental adaptability (satisfactory treatment performance for multiple antibiotics under various actual water matrixes), good stability and reusability, and significant toxicity reduction. The superior hetero-EF catalytic performance was mainly attributed to: 1) porous carbon and Ni existence were both conducive to the in-situ generation of H2O2 from dissolved O2; 2) the synergistic effects of bimetals together with electron transfer from the cathode promoted the regeneration of ≡ FeII/NiII, thereby accelerating the production of reactive oxygen species; 3) the unique nanosheet structure derived from the precursor two-dimensional Fe-Ni MOFs enhanced the accessibility of active sites. This work presented a promising hetero-EF cathode for the electrocatalytic treatment of antibiotic-containing wastewaters.
Collapse
Affiliation(s)
- Enyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Tong Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tseren-Ochir Soyol-Erdene
- Department of Environmental and Forest Engineering, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Ochirkhuyag Bayanjargal
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Yuqi Zuo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China.
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
4
|
Li S, Jiang B, Liu G, Shi C, Yu H, Lin Y. Recent progress of particle electrode materials in three-dimensional electrode reactor: synthesis strategy and electrocatalytic applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11490-11506. [PMID: 38198081 DOI: 10.1007/s11356-023-31807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
With the complete promotion of a green, low-carbon, safe, and efficient economic system as well as energy system, the promotion of clean governance technology in the field of environmental governance becomes increasingly vital. Because of its low energy consumption, great efficiency, and lack of secondary pollutants, three-dimensional (3D) electrode technology is acknowledged as an environmentally beneficial and sustainable way to managing clean surroundings. The particle electrode is an essential feature of the 3D electrode reactor. This study provides an in-depth examination of the most current advancements in 3D electrode technology. The significance of 3D electrode technology is emphasized, with an emphasis on its use in a variety of sectors. Furthermore, the particle electrode synthesis approach and mechanism are summarized, providing vital insights into the actual implementation of this technology. Furthermore, by a metrological examination of the research literature in this sector, the paper expounds on the potential and obstacles in the development and popularization of future technology.
Collapse
Affiliation(s)
- Siwen Li
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Bo Jiang
- Jilin Research and Design Institute of Building Science (Jilin Province Construction Engineering Quality Test Center), Changchun, 130011, China
| | - Gen Liu
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Chunyan Shi
- The University of Kitakyushu, 1-1 Hibikino, Wakamatsuku, Kitakyushu, Fukuoka, Japan
| | - Hongbin Yu
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yingzi Lin
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China.
| |
Collapse
|
5
|
Xue C, Ma J, Chen X, Liu D, Huang W. Efficient degradation of 2,4-dichlorophenol by heterogeneous electro-Fenton using bulk carbon aerogels modified in situ with FeCo-LDH as cathodes: Operational parameters and mechanism exploration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119114. [PMID: 37783084 DOI: 10.1016/j.jenvman.2023.119114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
In this study, an in situ grown FeCo-Layered double hydroxide anchored to the surface of a bulk carbon aerogel (FeCo-LDH/CA) for contaminant degradation during the heterogeneous electro-Fenton (EF) process. The results exhibited that the FeCo-LDH/CA cathode achieved 100% of 2,4-dichlorophenol (2,4-DCP = 20 mg/L) degradation within 120 min at pH = 3, application current 20 mA, and Na2SO4 concentration 0.05 M. Moreover, the degradation efficiency was impressive in the range of pH = 2-9. The coexistence of the Fe (III)/Fe (II) and Co (III)/Co (II) as active sites on the cathode surface promoted the in-situ decomposition of H2O2 to form reactive oxygen species (ROS). •OH and O2- were confirmed to be the major degradation pollutants of ROS. Furthermore, density functional theory (DFT) was used to predict the reaction sites of 2,4-DCP, and its possible degradation pathways were proposed. The toxicity of intermediate products was evaluated and decreased after degradation. In addition, the eight cycle experiments and the degradation of other typical contaminants demonstrated the satisfactory stability and applicability of the synthetic cathode. This study presents the preparation of an efficient and stable EF cathode, further promoting the application of iron-based composites in wastewater treatment.
Collapse
Affiliation(s)
- Cheng Xue
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianrui Ma
- China Academy of Information and Communications Technology, Beijing, 100191, China
| | - Xi Chen
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Dongfang Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Wenli Huang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|