1
|
Wang J, Zhang X, Jin D, Wu P. A critical review of sulfur autotrophic denitrification coupled with anammox. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125417. [PMID: 40288128 DOI: 10.1016/j.jenvman.2025.125417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/30/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Anaerobic ammonium oxidation (anammox) is an environmentally sustainable process with high nitrogen removal efficiency; however, nitrite serves as the limiting factor in this process. Sulfur autotrophic denitrification (SADN) employs sulfide as an electron donor to reduce nitrate to nitrite. Therefore, coupling SADN and anammox (SDA) can improve the nitrogen removal efficiency. This review analyzes the coupling mechanisms of three common SDA systems: S0-SDA, S2--SDA, and S2O32--SDA, as well as the dominant genera in the SDA process. This paper summarizes the influence of key operating parameters, including influent nitrogen loading, pH, and the N/S ratio, on the nitrogen removal efficiency of the SDA process and the effect of S2O32- addition on microbial structure in anammox. The application of the SDA process in real wastewater treatment is analyzed in detail. Overall, this overview of the SDA process plays an important role in the direction of the SDA development.
Collapse
Affiliation(s)
- Jianing Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Da Jin
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
2
|
Li D, Wang S, Liu G, Zeng EY. Dual intermittent aerations enhance nitrogen removal via anammox in anoxic/oxic biofilm process for carbon limited wastewater treatment. BIORESOURCE TECHNOLOGY 2025; 419:132096. [PMID: 39828045 DOI: 10.1016/j.biortech.2025.132096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/25/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Efficient nitrogen removal after organic capture is challenging through conventional nitrification-denitrification process. Two biofilm-based anoxic/oxic reactors, with a single intermittent zone (R1) or dual intermittent zones (R2), were compared in treating carbon-limited wastewater. Intermittent aeration integrated partial nitrification-anammox (PNA), partial denitrification-anammox (PDA), and denitrification, with anammox-related pathways contributing over 75% nitrogen removal in both reactors. As nitrogen loading rate increased from 0.14 to 0.19 kg-N m-3 day-1, nitrogen removal efficiency in R1 dropped from 74.3% to 46.0%, while R2 maintained 76.6% removal at low HRT of 6 h. The dual intermittent aeration strategy improved nitrogen removal capacity by enhancing PNA in the first intermittent zone and reducing effluent fluctuation in the second. Anammox bacteria (Candidatus Brocadia, relative abundance: 0.95-2.48%) were enriched across all zones, supporting efficient PNA and PDA. These findings suggested that dual intermittent aeration enhanced anammox in pre-anoxic processes for carbon limited wastewater treatment.
Collapse
Affiliation(s)
- Deyong Li
- School of Environment and Climate, Guangdong Engineering Research Center of Water Treatment Processes and Materials, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Shijie Wang
- School of Environment and Climate, Guangdong Engineering Research Center of Water Treatment Processes and Materials, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Shenzhen Guangming Water and Environment Co., Ltd., Shenzhen 518107, China
| | - Guoqiang Liu
- School of Environment and Climate, Guangdong Engineering Research Center of Water Treatment Processes and Materials, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| | - Eddy Y Zeng
- School of Environment and Climate, Guangdong Engineering Research Center of Water Treatment Processes and Materials, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| |
Collapse
|
3
|
Zhang Y, Li J, Chen Y, Yang J, Chen Z, Wang X. Rapid start-up and stable operation of pilot scale denitrification-partial nitritation/anammox process for treating electroplating tail wastewater. BIORESOURCE TECHNOLOGY 2024; 409:131192. [PMID: 39094960 DOI: 10.1016/j.biortech.2024.131192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
This study explored a novel economical and efficient process for treating actual low-ammonia nitrogen electroplating tail wastewater. A pilot scale system of denitrification-partial nitrification/anaerobic ammonium oxidation (DN-PN/A) was constructed and operated for 190 days. The partial nitrification (PN) reactor, filled with zeolite, increased free ammonia concentration beyond the nitrite oxidizing bacteria threshold and successfully supplied NO2--N, with nitrite accumulation rate exceeding 90 %. Over 109 days, the total nitrogen removal rate achieved was 80.2 ± 7.41 %, and the chemical oxygen demand removal rate reached 79.68 ± 9.53 %. The dominant functional bacteria were Nitrosomonas (5.45 %) and Candidatus Anammoxoglobus (28.84 %) in PN reactor and anaerobic ammonium oxidation (Anammox) reactor. This process, characterized by rapid start-up, strong shock resistance, and low cost, alleviates the pressure of ammonium pollution control, promotes the sustainable development of the electroplating industry and has the potential for application in the treatment of other industrial wastewater.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | - Jiayi Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | - Yongxing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | - Junfeng Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China
| | - Zhenguo Chen
- School of Environment, South China Normal University, Guangzhou 510006, China; Hua An Biotech Co., Ltd., Foshan 528300, China
| | - Xiaojun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, 510006, China.
| |
Collapse
|
4
|
Eng Nkonogumo PL, Zhu Z, Emmanuel N, Zhang X, Zhou L, Wu P. Novel and innovative approaches to partial denitrification coupled with anammox: A critical review. CHEMOSPHERE 2024; 358:142066. [PMID: 38670502 DOI: 10.1016/j.chemosphere.2024.142066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
The partial denitrification (PD) coupled with anaerobic ammonium oxidation (Anammox) (PD/A) process is a unique biological denitrification method for sewage that concurrently removes nitrate (NO3--N) and ammonium (NH4+-N) in sewage. Comparing PD/A to conventional nitrification and denitrification technologies, noticeable improvements are shown in energy consumption, carbon source demand, sludge generation and emissions of greenhouse gasses. The PD is vital to obtaining nitrites (NO2--N) in the Anammox process. This paper provided valuable insight by introduced the basic principles and characteristics of the process and then summarized the strengthening strategies. The functional microorganisms and microbial competition have been discussed in details, the S-dependent denitrification-anammox has been analyzed in this review paper. Important factors affecting the PD/A process were examined from different aspects, and finally, the paper pointed out the shortcomings of the coupling process in experimental research and engineering applications. Thus, this research provided insightful information for the PD/A process's optimization technique in later treating many types of real and nitrate-based wastewater. The review paper also provided the prospective economic and environmental position for the actual design implementation of the PD/A process in the years to come.
Collapse
Affiliation(s)
- Paul Luchanganya Eng Nkonogumo
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zixuan Zhu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Nshimiyimana Emmanuel
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Li Zhou
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
5
|
Zhang M, Liu J, Liang J, Fan Y, Gu X, Wu J. Response of nitrite accumulation, sludge characteristic and microbial transition to carbon source during the partial denitrification (PD) process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:165043. [PMID: 37355114 DOI: 10.1016/j.scitotenv.2023.165043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Partial denitrification (PD, nitrate (NO3--N) → nitrite (NO2--N)) as a novel pathway for NO2--N production has been widely concerned, but the specific conditions for highly efficient and stable nitrite maintenance are not yet fully understood. In this study, the effects of carbon sources (acetate, R1; propionate, R2; glucose, R3) on NO2--N accumulation was discussed without seeding PD sludge and the mechanism analysis related to sludge characteristic and microbial evolution were elucidated. The optimal NO2--N, nitrate-to-nitrite transformation ratio (NTR) and nitrite removal efficiency (NRE) reached up to 32.10 mg/L, 98.01 %, and 86.95 % in R1. However, due to the complex metabolic pathway of glucose, the peak time of NO2--N production delayed from 30 min to 60 min. The sludge particle size decreased from 154.2 μm (R1), 130.8 μm (R2) to 112.6 μm (R3) with the increasing extracellular polymeric substances (EPS) from 80.75-85.44 mg/gVSS, 82.68-92.75 mg/gVSS to 106.31-110.25 mg/gVSS, where the ratio of proteins/polysaccharides (PN/PS) was proved to be closely associated with NO2--N generation. For the microbial evolution, Saccharimonadales (70.42 %) dominated the glucose system, while Bacillus (7.42-21.63 %) and Terrimonas (4.24-5.71 %) were the main contributors for NO2--N accumulation in the acetate and propionate systems. The achievement of PD showed many advantages of lower carbon demand, minimal sludge production, lesser greenhouse gas emission and prominent nutrient removal, offering an economically and technically attractive alternative for NO3--N containing wastewater treatment.
Collapse
Affiliation(s)
- Miao Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Jingbu Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Jiayin Liang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Yajun Fan
- Yangzhou Polytechnic Institute, Yangzhou 225127, PR China
| | - Xiaodan Gu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jun Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
| |
Collapse
|
6
|
Al-Hazmi HE, Maktabifard M, Grubba D, Majtacz J, Hassan GK, Lu X, Piechota G, Mannina G, Bott CB, Mąkinia J. An Advanced Synergy of Partial Denitrification-Anammox for Optimizing Nitrogen Removal from Wastewater: A Review. BIORESOURCE TECHNOLOGY 2023; 381:129168. [PMID: 37182680 DOI: 10.1016/j.biortech.2023.129168] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Anammox is a widely adopted process for energy-efficient removal of nitrogen from wastewater, but challenges with NOB suppression and NO3- accumulation have led to a deeper investigation of this process. To address these issues, the synergy of partial denitrification and anammox (PD-anammox) has emerged as a promising solution for sustainable nitrogen removal in wastewater. This paper presents a comprehensive review of recent developments in the PD-anammox system, including stable performance outcomes, operational parameters, and mathematical models. The review categorizes start-up and recovery strategies for PD-anammox and examines its contributions to sustainable development goals, such as reducing N2O emissions and saving energy. Furthermore, it suggests future trends and perspectives for improving the efficiency and integration of PD-anammox into full-scale wastewater treatment system. Overall, this review provides valuable insights into optimizing PD-anammox in wastewater treatment, highlighting the potential of simultaneous processes and the importance of improving efficiency and integration into full-scale systems.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mojtaba Maktabifard
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland; Faculty of Environmental and Energy Engineering, Poznań University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Dominika Grubba
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Gamal K Hassan
- Water Pollution Research Department, National Research Centre, 33 Bohouth St, Giza, Dokki P.O. Box 12622, Egypt
| | - Xi Lu
- Three Gorges Smart Water Technology Co., LTD, 65 LinXin Road, ChangNing District, 200335 Shanghai, China
| | - Grzegorz Piechota
- GPCHEM, Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, 87-100 Toruń, Poland.
| | - Giorgio Mannina
- Engineering Department, Palermo University, Ed. 8 Viale delle Scienze, 90128 Palermo, Italy
| | - Charles B Bott
- Hampton Roads Sanitation District, 1436 Air Rail Ave., Virginia Beach, VA 23455, USA
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|