1
|
Pei W, Yang J, Wang L, Maqsood A, Li M. Rapid urbanization decelerates regional net anthropogenic phosphorus input: Evidence from the Chengdu-Chongqing urban agglomeration in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124171. [PMID: 39827602 DOI: 10.1016/j.jenvman.2025.124171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Mitigating the pressure of regional phosphorus (P) inputs driven by human activities is essential for the prevention and control of non-point source pollution as well as for effective environmental management. This study emploied the net anthropogenic phosphorus input (NAPI) model and the coupling coordination degree model (CCDM) to quantitatively analyze the spatiotemporal evolution of phosphorus inputs and urbanization levels in the Chengdu-Chongqing urban agglomeration (CCUA) in Southwest China from 2011 to 2022. By integrating urbanization, socioeconomic and land use data, we identified key driving factors and specific indicators influencing changes in regional phosphorus inputs and their components. Compared to 2011, urbanization levels increased by 16.60% in 2022, while regional phosphorus inputs decreased by 21.52%. P input from human food and livestock feed was the main component of NAPI during the study period (54.27%-61.28%), followed by fertilizer application (37.46%-44.62%). The shift in industrial structure towards the tertiary sector (explanation rate 20.8%) and construction land expansion (explanation rate 17.7%) were identified as key drivers of phosphorus input changes. Additionally, urbanization has a more significant direct standardized path coefficient on P inputs (-7.30) than socioeconomic (0.44) and land use factors (0.37) based on Partial Least Squares Path Modeling (PLS-PM), suggesting that regional phosphorus inputs decrease with increasing urbanization levels. These findings provide new insights for the formulation of effective phosphorus management strategies in rapidly urbanizing areas, and are conducive to the sustainable management of urbanization progress and ecological environment.
Collapse
Affiliation(s)
- Wei Pei
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Junlan Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Lintao Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Abdullah Maqsood
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Pei W, Xu Q, Lei Q, Du X, Luo J, Qiu W, An M, Zhang T, Liu H. Interactive impact of landscape composition and configuration on river water quality under different spatial and seasonal scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175027. [PMID: 39059653 DOI: 10.1016/j.scitotenv.2024.175027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Currently, the comprehensive effect of the landscape pattern on river water quality has been widely studied. However, the interactive influences of landscape type, namely composition (COM) and configuration (CON) on water quality variations, as well as the specific landscape driving types affecting water quality variations under different spatial and seasonal scales remain unclear. To further improve the effectiveness of landscape planning and water quality protection, this study collected monthly water samples from the Fengyu River Watershed in southwestern China from 2018 to 2021, the Biota-Environment Matching Analysis (Bioenv) was used to identify key metrics representing landscape COM and CON, respectively. Then, the multiple regression (MLR) and redundancy analysis (RDA) were used to explore the relationship between these landscape metrics and water quality. In addition, this study used a variation partitioning analysis (VPA) to quantify the interactive and independent influence of landscape COM and CON on water quality. Results revealed that construction land and the Shannon's diversity index (SHDI) were the key metrics of landscape COM and CON, respectively, for predicting water pollution concentrations. The interactive contribution was particularly sensitive to seasonal changes in riparian buffer areas (27.66 % to 48.73 %), while it remained relatively stable at the sub-watershed scale (38.22 % to 40.51 %). Moreover, landscape CON had a higher independent contribution to variations on water quality across most spatio-temporal scales. Overall, identifying and managing key landscape type and consequential metrics, matching with the spatio-temporal scale, holds promise for enhancing water quality conservation. Furthermore, this study provides valuable insights into the identification and selection of core landscape metrics.
Collapse
Affiliation(s)
- Wei Pei
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiyu Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiuliang Lei
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xinzhong Du
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jiafa Luo
- AgResearch Ruakura, Hamilton 3240, New Zealand
| | - Weiwen Qiu
- The New Zealand Institute for Plant & Food Research Limited, Private Bag, 4704 Christchurch, New Zealand
| | - Miaoying An
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianpeng Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongbin Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Wang Y, Huang C, Liu G, Zhao Z, Li H, Sun Y. Assessing spatiotemporal risks of nonpoint source pollution via soil erosion: a coastal case in the Yellow River Delta, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34569-34587. [PMID: 38709409 DOI: 10.1007/s11356-024-33523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Nonpoint source pollution (NPSP) has always been the dominant threat to regional waters. Based on empirical models of the revised universal soil loss equation and the phosphorus index, an NPSP risk assessment model denoted as SL-NPSRI was developed. The surface soil pollutant loss was estimated by simulating the rain-runoff topographic process, and the influence of path attenuation was quantified. A case study in the Yellow River Delta and corresponding field surveys of soil pollutants and water quality showed that the established model can be applied to evaluate the spatial heterogeneity of NPSP. NPSP usually occurs during high-intensity rainfall periods and in larger estuaries. Summer rainfall increased pollutant transport into the sea from late July to mid-August and caused estuarine dilution. Higher NPSP risks often correspond to coastal areas with lower vegetation coverage, higher soil erodibility, and higher soil pollutant concentrations. Agricultural NPSP originating from cropland significantly increase the pollutant fluxes. Therefore, area-specific land use management and vegetation coverage improvement, and temporal-specific strategies can be explored for NPSP control during source-transport hydrological processes. This research provides a novel insight for coastal NPSP simulations by comprehensively analyzing the soil erosion process and its associated pollutant loss effects, which can be useful for targeted spatiotemporal solutions.
Collapse
Affiliation(s)
- Youxiao Wang
- School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan, 250101, China
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chong Huang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gaohuan Liu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Zhonghe Zhao
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - He Li
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingjun Sun
- School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan, 250101, China
| |
Collapse
|
4
|
Xu W, Liu L, Zhu SJ, Sun AH, Wang H, Ding ZY. Identifying the critical areas and primary sources for agricultural non-point source pollution management of an emigrant town within the Three Gorges reservoir area. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:602. [PMID: 37084027 DOI: 10.1007/s10661-023-11180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Agricultural non-point source pollution is threatening water environmental health of the Three Gorges reservoir. However, current studies for precision management of the agricultural non-point source pollution within this area are still limited. The objective of this study was identifying the critical areas and primary sources of agricultural non-point source pollution for precision management. Firstly, the inventory analysis approach was used to estimate the discharge amount of total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) from farmland fertilizer, crop residues, livestock breeding, and daily activities. Afterwards, the deviation standardization method was applied to evaluate the emission intensity of TN, TP, and COD, as well as calculating the comprehensive pollution index (CPI) of each village, based on which the critical areas for agricultural non-point source pollution management could be distinguished. Moreover, the equivalence pollution load method was conducted to identify the primary pollution sources within each critical zone. The above methods were implemented to an emigrant town within the Three Gorges reservoir area named Gufu. Results showed that agricultural non-point source pollution in Gufu town has been alleviated to a certain extent since 2016. Nevertheless, in four areas of the town (i.e., Longzhu, Fuzi, Shendu, and Maicang), the agricultural non-point source pollution still deserved attention and improvement. For the mentioned critical areas, farmland fertilizer and livestock breeding were the primary sources causing agricultural non-point source pollution. The emission amount of TN and TP from farmland fertilizer accounted for 60% and 48% of the total, respectively. And those from livestock breeding were 29% and 46%. Our research could provide definite targets to relieve agricultural non-point source pollution, which had great significance to protect water environment while coordinating regional economic growth after emigrant resettlement.
Collapse
Affiliation(s)
- Wen Xu
- Hubei Key Laboratory of Hydropower Engineering Construction and Management, China Three Gorges University, Yichang, 443002, China
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Ling Liu
- Hubei Key Laboratory of Hydropower Engineering Construction and Management, China Three Gorges University, Yichang, 443002, China
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Shi-Jiang Zhu
- Hubei Key Laboratory of Hydropower Engineering Construction and Management, China Three Gorges University, Yichang, 443002, China.
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, China.
| | - Ai-Hua Sun
- Hubei Key Laboratory of Hydropower Engineering Construction and Management, China Three Gorges University, Yichang, 443002, China
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Hao Wang
- Hubei Key Laboratory of Hydropower Engineering Construction and Management, China Three Gorges University, Yichang, 443002, China
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Zhi-Yu Ding
- Hubei YILINENG Technology Co., Ltd, Yichang, 443002, China
| |
Collapse
|