1
|
Zhu B, Deng Y, Hou R, Wang R, Liu C, Jia Z. Mechanisms of heavy metal-induced rhizosphere changes and crop metabolic evolution: The role of carbon materials. ENVIRONMENTAL RESEARCH 2024; 263:120196. [PMID: 39427949 DOI: 10.1016/j.envres.2024.120196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
To investigate the effects of modified carbon-based materials on soil environmental remediation and crop physiological regulation, this research relied on rice pots with lead (Pb) and cadmium (Cd) composite contamination. Dolomite, montmorillonite, attapulgite and sepiolite modified biochar with different doses have been developed to explore the mechanisms on heavy metal passivation, nutrient improvement, microbial activation, and crop growth. The results indicated that the modified materials effectively reduced heavy metal bioavailability and accumulation in plant tissues through adsorption complexation. Specifically, under montmorillonite and sepiolite modified treatments, the Grains-Pb content significantly decreased by 29.23-30.31% and 27.49-30.58%, compared to the control group (CK). Meantime, carbon-based materials increased available nutrient levels, providing a biological substrate for soil microorganisms metabolism. The content of ammonium nitrogen (NH4+-N) and available phosphorus (AP) in different proportions of montmorillonite modified biochar increased by 10.99-13.98% and 55.76-77.86%, respectively, compared to CK. Furthermore, sepiolite modified biochar enhanced bacterial community diversity, significantly improving the tolerance and resistance of bacterial communities such as Proteobacteria and Acidobacteria to heavy metals. Meanwhile, carbon-based materials enhanced community stability and network complexity, improving microbial stress resistance to adverse environments. In summary, montmorillonite and sepiolite modified biochar regulated microbial community interaction mechanisms by mitigating the physiological toxicity of heavy metals. This process enhanced soil available nutrients and ecological function stability, which had significant implications for improving crop growth and quality.
Collapse
Affiliation(s)
- Bingyu Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yanling Deng
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Rui Wang
- Heilongjiang province Five Building construction Engineering Co LTD, Harbin, Heilongjiang, 150090, China
| | - Chao Liu
- Heilongjiang Province River and Lake chief System Security center, Harbin, Heilongjiang, 150000, China
| | - Zilin Jia
- Heilongjiang province Five Building construction Engineering Co LTD, Harbin, Heilongjiang, 150090, China
| |
Collapse
|
2
|
Eltohamy KM, Menezes-Blackburn D, Klumpp E, Liu C, Jin J, Xing C, Lu Y, Liang X. Microbially Induced Soil Colloidal Phosphorus Mobilization Under Anoxic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7554-7566. [PMID: 38647007 DOI: 10.1021/acs.est.3c10022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Understanding the behavior of colloidal phosphorus (Pcoll) under anoxic conditions is pivotal for addressing soil phosphorus (P) mobilization and transport and its impact on nutrient cycling. Our study investigated Pcoll dynamics in acidic floodplain soil during a 30-day flooding event. The sudden oxic-to-anoxic shift led to a significant rise in pore-water Pcoll levels, which exceeded soluble P levels by more than 2.7-fold. Colloidal fractions transitioned from dispersed forms (<220 nm) to colloid-associated microaggregates (>220 nm), as confirmed by electron microscopy. The observed increase in colloidal sizes was paralleled by their heightened ability to form aggregates. Compared to sterile control conditions, anoxia prompted the transformation of initially dispersed colloids into larger particles through microbial activity. Curiously, the 16S rRNA and ITS microbial diversity analysis indicated that fungi were more strongly associated with anoxia-induced colloidal release than bacteria. These microbially induced shifts in Pcoll lead to its higher mobility and transport, with direct implications for P release from soil into floodwaters.
Collapse
Affiliation(s)
- Kamel M Eltohamy
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Water Relations & Field Irrigation, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Daniel Menezes-Blackburn
- Department of Soils, Water and Agricultural Engineering, Sultan Qaboos University, P.O. Box 34, Al-Khoud 123, Sultanate of Oman
| | - Erwin Klumpp
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Chunlong Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Junwei Jin
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaogang Xing
- Analysis Center of Agrobiology and Environmental Sciences of Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinqiang Liang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| |
Collapse
|
3
|
Bolan S, Sharma S, Mukherjee S, Kumar M, Rao CS, Nataraj KC, Singh G, Vinu A, Bhowmik A, Sharma H, El-Naggar A, Chang SX, Hou D, Rinklebe J, Wang H, Siddique KHM, Abbott LK, Kirkham MB, Bolan N. Biochar modulating soil biological health: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169585. [PMID: 38157897 DOI: 10.1016/j.scitotenv.2023.169585] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Biochar can be used for multifunctional applications including the improvement of soil health and carbon storage, remediation of contaminated soil and water resources, mitigation of greenhouse gas emissions and odorous compounds, and feed supplementation to improve animal health. A healthy soil preserves microbial biodiversity that is effective in supressing plant pathogens and pests, recycling nutrients for plant growth, promoting positive symbiotic associations with plant roots, improving soil structure to supply water and nutrients, and ultimately enhancing soil productivity and plant growth. As a soil amendment, biochar assures soil biological health through different processes. First, biochar supports habitats for microorganisms due to its porous nature and by promoting the formation of stable soil micro-aggregates. Biochar also serves as a carbon and nutrient source. Biochar alters soil physical and chemical properties, creating optimum soil conditions for microbial diversity. Biochar can also immobilize soil pollutants and reduce their bioavailability that would otherwise inhibit microbial growth. However, depending on the pyrolysis settings and feedstock resources, biochar can be comprised of contaminants including polycyclic aromatic hydrocarbons and potentially toxic elements that can inhibit microbial activity, thereby impacting soil health.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Australia
| | - Shailja Sharma
- School of Biological & Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Manish Kumar
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - Ch Srinivasa Rao
- ICAR-National Academy of Agricultural Research Management, Hyderabad 500 030, India
| | - K C Nataraj
- Agricultural Research Station, Acharya N.G. Ranga Agricultural University, Anantapur 515 001, Andhra Pradesh, India
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science, and Environment (CESE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science, and Environment (CESE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Arnab Bhowmik
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC, United States of America
| | - Harmandeep Sharma
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC, United States of America
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, People's Republic of China; Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Scott X Chang
- Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Lynette K Abbott
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States of America
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Australia.
| |
Collapse
|
4
|
Tong J, Wu H, Jiang X, Ruan C, Li W, Zhang H, Pan S, Wang J, Ren J, Zhang C, Shi J. Dual Regulatory Role of Penicillium oxalicum SL2 in Soil: Phosphorus Solubilization and Pb Stabilization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:603-616. [PMID: 38109294 DOI: 10.1021/acs.est.3c08881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The mechanisms of the P. oxalicum SL2-mediated microbial community on phosphorus solubilization and Pb stabilization were investigated through a 90-day soil experiment. In the treatments inoculated with P. oxalicum SL2, the amount of P. oxalicum SL2-GFP remained at 77.8%-138.6% of the initial inoculation amount after 90 days, and the available phosphorus (AP) content increased 21.7%-40.8% while EDTA-Pb decreased 29.9%-43.2% compared with CK treatment. SEM-EDS results showed that P. oxalicum SL2 changed the agglomeration degree of microaggregates and promoted the combination of Pb with C and O elements. These phenomena were enhanced when applied with Ca3(PO4)2. Microbial community analysis showed that P. oxalicum SL2 improved soil microbial activity, in which the fungi absolute abundance increased about 15 times within 90 days. Correlation analyses and a partial least-squares path model showed that the activation of Penicillium, Ascobolus, Humicola, and Spizellomyces in a fungal community increased the content of oxalate and AP, which directly decreased EDTA-Pb content, while the change of Bacillus, Ramlibacter, Gemmatimonas, and Candidatus Solibacter in the bacterial community regulated Fe/Mn/S/N cycle-related functions, thus promoting the conversion of Pb to oxidizable state. Our findings highlight that P. oxalicum SL2 enhanced the microbial-induced phosphate precipitation process by activating soil microbial communities and regulating their ecological functions.
Collapse
Affiliation(s)
- Jianhao Tong
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hanxin Wu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Jiang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chendao Ruan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weilong Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haonan Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siyi Pan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiayu Ren
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chun Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Cheng K, Wang X, Fu L, Wang W, Liu M, Sun B. Interaction between dissolved organic carbon and fungal network governs carbon mineralization in paddy soil under co-incorporation of green manure and biochar. Front Microbiol 2023; 14:1233465. [PMID: 37675431 PMCID: PMC10477716 DOI: 10.3389/fmicb.2023.1233465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Legume crops in rice cultivation are typically rotated and incorporated into the soil as green manure to improve soil fertility. Biochar has recently been co-incorporated with green manure to simultaneously stimulate soil organic carbon (SOC) mineralization and increase carbon (C) sequestration. However, few studies examine the effects of the co-incorporation of biochar and green manure on C cycling and the underlying microbial mechanisms in paddy fields. In this study, the effects of the co-incorporation of green manure and biochar on C mineralization, dissolved organic carbon (DOC) characteristics, and microbial community structures were investigated. A pot study was conducted with three treatments: inorganic NPK (NPK), inorganic NPK + green manure (GM), and inorganic NPK + green manure + biochar (GMC). Organic amendments significantly increased cumulative C mineralization, with amounts in the order GMC (3,434 mg·kg-1) > GM (2,934 mg·kg-1) > NPK (2,592 mg·kg-1). Fertilizer treatments had similar effects on DOC concentrations, with amounts in the order GMC (279 mg·kg-1) > GM (255 mg·kg-1) > NPK (193 mg·kg-1). According to fluorescence spectra, the highest microbial humic acid-like fraction and biological index were also in GMC. Co-incorporation of green manure and biochar shifted the composition of bacterial and fungal communities but more importantly, increased fungal network complexity and decreased bacterial network complexity. The increase in fungal network complexity with the increase in DOC concentrations and microbially derived components was the dominant factor in promoting C mineralization. Overall, this study reveals the underlying biochemical mechanism, the interaction between DOC and fungal network of C cycling in paddy soil under the co-incorporation of green manure and biochar management, and provides fundamental knowledge for exploring effective approaches to improve soil fertility and health in the future.
Collapse
Affiliation(s)
- Kun Cheng
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Libo Fu
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Wei Wang
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ming Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
6
|
Zhang C, Zhao X, Liang A, Li Y, Song Q, Li X, Li D, Hou N. Insight into the soil aggregate-mediated restoration mechanism of degraded black soil via biochar addition: Emphasizing the driving role of core microbial communities and nutrient cycling. ENVIRONMENTAL RESEARCH 2023; 228:115895. [PMID: 37054835 DOI: 10.1016/j.envres.2023.115895] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
Soil microbial communities are responsive to biochar application. However, few studies have investigated the synergistic effects of biochar application in the restoration of degraded black soil, especially soil aggregate-mediated microbial community changes that improve soil quality. From the perspective of soil aggregates, this study explored the potential microbial driving mechanism of biochar (derived from soybean straw) addition in black soil restoration in Northeast China. The results showed that biochar significantly improved the soil organic carbon, cation exchange capacity and water content, which play crucial roles in aggregate stability. The addition of biochar also significantly increased the concentration of the bacterial community in mega-aggregates (ME; 0.25-2 mm) compared with micro-aggregates (MI; <0.25 mm). Microbial co-occurrence networks analysis showed that biochar enhanced microbial interactions in terms of the number of links and modularity, particularly in ME. 16 S rRNA sequencing predicted that the expression of genes related to carbon (rbcL, acsA, gltS, aclB, and mcrA) and nitrogen (nifH and amoA) transformation increased after the addition of biochar. Furthermore, the functional microbes involved in carbon fixation (Firmicutes and Bacteroidetes) and nitrification (Proteobacteria) were significantly enriched and are the key regulators of carbon and nitrogen kinetics. Structural equation model (SEM) analysis further showed that the application of biochar promoted soil aggregates to positively regulate the abundance of soil nutrient conversion-related microorganisms, thereby increasing soil nutrient content and enzyme activities. These results provide new insights into the mechanisms of soil restoration through biochar addition.
Collapse
Affiliation(s)
- Chi Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Xin Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Aijie Liang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Yunying Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Qiuying Song
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Xianyue Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Dapeng Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China.
| | - Ning Hou
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China.
| |
Collapse
|
7
|
Eltohamy KM, Milham PJ, Gouda M, Menezes-Blackburn D, Khan S, Liu B, Jin J, Ye Y, Liang X. Size and composition of colloidal phosphorus across agricultural soils amended with biochar, manure and biogas slurry. CARBON RESEARCH 2023; 2:16. [DOI: 10.1007/s44246-023-00048-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/24/2023] [Accepted: 03/19/2023] [Indexed: 05/29/2024]
Abstract
AbstractThe long-term application of organic amendments like manure, biochar and biogas slurry can increase phosphorus (P) levels in agricultural soils; however, at present, it's not clear how this affects the P association with different mobile water-dispersible colloidal particles (Pcoll). Thus, this study aimed to assess the effects of the long-term application of different organic amendments on the abundance, size and compositional characteristics of Pcoll. For this purpose, a total of 12 soils amended with the above three organic amendments were sampled from the Zhejiang Province, China, and Pcoll were fractionated into nano-sized (NC; 1–20 nm), fine-sized (FC; 20–220 nm), and medium-sized (MC; 220–450 nm) by a combination of differential centrifugation and ultrafiltration steps. These three Pcoll forms together accounted for 74 ± 14% of the total soil solution dissolved P content, indicating that Pcoll release was a key process in the overland P transport from these soils. Soils treated with biochar showed lower Pcoll contents than those treated with manure or slurry alone; this effect should be further explored in a controlled inductive research approach. Compositional analysis showed that inorganic P was the predominant Pcoll form in the NC (54 ± 20%) and FC (63 ± 28%) fractions, but not in the MC (42 ± 26%) fraction. Among the three fractions, the organic carbon (OC)–calcium (Ca) complex was the major carrier of NC-bound Pcoll, MC-bound Pcoll was better correlated with OC–manganese/iron/aluminium colloids than with OC–Ca colloids, and both of these phenomena co-occurred in the FC fraction. The current study provides novel insights into the impact of various carbon amendments on the propensity for P loss associated with different soil mobile colloidal fractions, and will therefore, inform future agronomic and environmental-related policies and studies.
Collapse
|