1
|
Hassan NS, Jalil AA, Bahari MB, Izzuddin NM, Fauzi NAFM, Jusoh NWC, Kamaroddin MFA, Saravanan R, Tehubijuluw H. A critical review of MXene-based composites in the adsorptive and photocatalysis of hexavalent chromium removal from industrial wastewater. ENVIRONMENTAL RESEARCH 2024; 259:119584. [PMID: 38992758 DOI: 10.1016/j.envres.2024.119584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
The growing concern of water pollution is a critical issue stemming from industrialization and urbanization. One of the specific concerns within this broader problem is the toxicity associated with chromium (Cr), especially in its Cr (VI) form. Transition metal carbides/nitrides (MXenes) are attractive materials for the treatment of water due to their unique properties such as layered structure, high surface area, conductivity, flexibility, scalable manufacture, and surface functions. Adsorption and photocatalysis reactions are the two promising methods for the removal of Cr (VI) by using MXenes. Still, most of the previous reviews were limited to the single application area. Hence, this review covers recent developments in MXene-based composites, highlighting their dual role as both adsorbents and photocatalysts in the removal of Cr (VI). MXene-based composites are found to be effective in both adsorption and photodegradation of Cr (VI). Most MXene-based composites have demonstrated exceptional removal efficiency for Cr (VI), achieving impressive adsorption capacities ranging from 100 to 1500 mg g-1 and degradation percentages between 80% and 100% in a relatively short period. The active functional groups present on the surface of MXene have a viable impact on the adsorption and photodegradation performance. The mechanism of Cr (VI) removal is explained, with MXenes playing a key role in electrostatic attraction for adsorption and as co-catalysts in photocatalysis. However, MXene-based composites have limitations such as instability, competition with co-existing ions, and regeneration challenges. Further research is needed to address these limitations. Additionally, MXene-based composites hold promise for addressing water contamination, heavy metal removal, hydrogen production, energy storage, gas sensing, and biomedical applications.
Collapse
Affiliation(s)
- N S Hassan
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia; Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - A A Jalil
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia; Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 60210, India.
| | - M B Bahari
- Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - N M Izzuddin
- Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - N A F M Fauzi
- Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - N W C Jusoh
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - M F A Kamaroddin
- Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - R Saravanan
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, 1000000, Chile
| | - H Tehubijuluw
- Department of Chemistry, Pattimura University, Kampus Poka, 97134, Jl. Ir. M. Putuhena, Ambon, Indonesia
| |
Collapse
|
2
|
Yang Z, Xiao H, Mao Y, Zhang H, Lu Y, Hu Z. Amplifying chlorinated phenol decomposition via Dual-Pathway O 2 Activation: The impact of zirconium loading on BiOCl. J Colloid Interface Sci 2024; 668:171-180. [PMID: 38677206 DOI: 10.1016/j.jcis.2024.04.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
The effectiveness of photocatalytic molecular oxygen (O2) activation in pollutant removal relies on the targeted production of reactive oxygen species (ROS). Herein, we demonstrate the dual-pathway activation of O2 on BiOCl through zirconium (Zr) loading. The incorporation of Zr onto the surface of BiOCl not only leads to an increased generation of oxygen vacancies (OV) but also fosters a coupling between the d electrons of Zr and OV, forming dual-active sites known as Zr-oxygen vacancies (Zr-OV). Generally, OV adsorbs O2 and transfers one electron directly to form superoxide radicals (•O2-). Contrary to the conventional single-electron direct activation of O2 to form •O2-, Zr-OV exhibits more flexible coordination and superior electron-donating capabilities. It facilitates O2 conversion to peroxide radicals (O22-) and enables the subsequent generation of •O2- from O22-, significantly promotes the dechlorination and mineralization efficiency of chlorophenol under visible light. This study presents a straightforward strategy to precisely regulate ROS production by expanding pathways, shedding light on the critical role of managing ROS generation for effective pollutant purification.
Collapse
Affiliation(s)
- Zhiping Yang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu 610031, China
| | - Hongmei Xiao
- Key State Laboratory of Industrial Vent Gas Reuse, The Southwest Research & Design Institute of the Chemical Industry, Chengdu 610225, China
| | - Yudie Mao
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu 610031, China
| | - Hai Zhang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu 610031, China
| | - Yixin Lu
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu 610031, China.
| | - Zhao Hu
- Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
3
|
Hassan NS, Jalil AA, Fei ICM, Razak MTA, Khusnun NF, Bahari MB, Riwayati YI, Suprapto S, Prasetyoko D, Firmansyah ML, Salleh NFM, Rajendran S. Vanadia as an electron-hole recombination inhibitor on fibrous silica-titania for selective hole oxidation of ciprofloxacin and Congo red photodegradation. CHEMOSPHERE 2023; 338:139502. [PMID: 37453521 DOI: 10.1016/j.chemosphere.2023.139502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Vanadia (V2O5)-incorporated fibrous silica-titania (V/FST) catalysts, which were successfully synthesized using a hydrothermal method followed by the impregnation of V2O5. The catalysts were then characterized using numerous techniques, including X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption analyses, ultraviolet-visible diffuse reflectance spectroscopy, Fourier-transform infrared, X-ray photoelectron spectroscopy, and photoluminescence (PL) analyses. The study found that varying the amount of V2O5 (1-10 wt%) had a significant impact on the physicochemical properties of the FST, which in turn improved the photodegradation efficiency of two organic compounds, ciprofloxacin (CIP) and congo red (CR). 5V/FST demonstrated the best performance in degrading 10 mg L-1 of CIP (83%) and CR (100%) at pH 3 using 0.375 g L-1 catalyst under visible light irradiation within 180 min. The highest photoactivity of 5V/FST is mainly due to higher crystallinity and the highest number of V2O5-FST interactions. Furthermore, as demonstrated by PL analysis, the 5V/FST catalyst has the most significant impact on interfacial charge transfer and reduces electron-hole recombination. The photodegradation of both contaminants follows the Langmuir-Hinshelwood pseudo-first-order model, according to the kinetic study. The scavenger investigation demonstrated that hydroxyl radicals and holes dominated species in the system, indicating that the catalyst effectively generated reactive species for pollutant degradation. A possible mechanism was also identified for FST and 5V/FST. Interestingly, V2O5 acts as an electron-hole recombination inhibitor on FST for selective hole oxidation of ciprofloxacin and congo red photodegradation. Finally, the degradation efficiency of the catalyst remained relatively stable even after five cyclic experiments, indicating its potential for long-term use in environmental remediation.
Collapse
Affiliation(s)
- N S Hassan
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - A A Jalil
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia.
| | - I C M Fei
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - M T A Razak
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - N F Khusnun
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - M B Bahari
- Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - Y I Riwayati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, Surabaya, 60111, Indonesia
| | - S Suprapto
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, Surabaya, 60111, Indonesia
| | - D Prasetyoko
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, Surabaya, 60111, Indonesia
| | - M L Firmansyah
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Airlangga University, Jl. Dr. Ir. H. Soekarno, Surabaya, 60115, Indonesia
| | - N F M Salleh
- Environmental and Occupational Health Programme, School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775, Arica, Chile
| |
Collapse
|
4
|
Zeng Q, Dong X, Ren X, Wu D, Ma H, Li Y, Wei Q. Signal-Enhanced Immunosensor-Based MOF-Derived ZrO 2 Nanomaterials as Electrochemiluminescence Emitter for D-Dimer Detection. Anal Chem 2023; 95:13596-13604. [PMID: 37643000 DOI: 10.1021/acs.analchem.3c02289] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Metal oxide nanomaterials have garnered significant attention in the field of electrochemiluminescence (ECL) sensing due to their efficient, stable, and nontoxic properties. However, the current research on metal oxide nanomaterials has primarily focused on their cathodic luminescence properties, with limited reports on their anodic ECL properties. In this study, we utilized MOF-derived ZrO2 nanomaterials as luminophores to generate stable anodic ECL signals in the presence of the coreactant tripropylamine (TPrA). Additionally, a signal-enhancing immunosensor was developed to analyze D-dimer by incorporating the coreaction accelerator Cu-doped TiO2 (TiO2-Cu). The ZrO2 synthesized by calcining UiO-67 demonstrated nontoxicity and biocompatibility, exhibiting efficient and stable ECL emission in a TPrA solution. The inclusion of TiO2-Cu as a coreaction accelerator in the immunosensor resulted in the formation of a ternary system of ZrO2/TiO2-Cu/TPrA. The Cu doping effectively narrowed the bandgap of TiO2 and enhanced its conductivity. As a substrate, TiO2-Cu reacted with more TPrA, generating sufficient free radicals to effectively enhance the ECL signal of ZrO2. In this article, a short peptide ligand, NFC (NARKFYKGC), was designed to immobilize antibodies and maintain the activity of antigen-binding sites during the construction of the immunosensor. The developed immunosensor was used for the accurate detection of D-dimers, with a wide linear range of 0.05-600 ng/mL and a low detection limit of 21 pg/mL..
Collapse
Affiliation(s)
- Qingze Zeng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xue Dong
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Wang Z, Chen H, Rong C, Li A, Hua X, Dong D, Liang D, Liu H. Photocatalytic Degradation of Acetaminophen in Aqueous Environments: A Mini Review. TOXICS 2023; 11:604. [PMID: 37505569 PMCID: PMC10386104 DOI: 10.3390/toxics11070604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Over the past few decades, acetaminophen (ACT), a typical nonsteroidal anti-inflammatory drug (NSAID), has gained global usage, positioning itself as one of the most extensively consumed medications. However, the incomplete metabolism of ACT leads to a substantial discharge into the environment, classifying it as an environmental contaminant with detrimental effects on non-target organisms. Various wastewater treatment technologies have been developed for ACT removal to mitigate its potential environmental risk. Particularly, photocatalytic technology has garnered significant attention as it exhibits high efficiency in oxidizing and degrading a wide range of organic pollutants. This comprehensive review aims to systematically examine and discuss the application of photocatalytic technology for the removal of ACT from aqueous environments. Additionally, the study provides a detailed overview of the limitations associated with the photocatalytic degradation of ACT in practical applications, along with effective strategies to address these challenges.
Collapse
Affiliation(s)
- Zhuowen Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Haijun Chen
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Chang Rong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Anfeng Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Dapeng Liang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Haiyang Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| |
Collapse
|