1
|
Wang R, Wang Z, Li C, Chen J, Zhu N. Deciphering the mechanism of microbial metabolic function shift and dissolved organic matter variation in acidogenic fermentation of waste activated sludge induced by antiviral drugs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123711. [PMID: 39689537 DOI: 10.1016/j.jenvman.2024.123711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Antiviral drugs (ATVs), as emerging contaminants enriched in wastewater activated sludge (WAS) in wastewater treatment plants, affect subsequent treatment. ATVs have been shown to have negative influences on anaerobic digestion of WAS, but it is unclear how ATVs affect functional microbial metabolic activity and changes in intermediates. Thus, the effect of the anti-HIV drug ritonavir (RIT) on the period of anaerobic fermentation (AF) and the response of microbial community structure were examined in this study. Results indicated that the production of total volatile fatty acids (VFAs) decreased from 2010.21 mg/L to 372.03 mg/L under 125-1000 μg RIT/kg TSS treatment. Characterization of organic matters revealed that dissolved organic matter in the high-dose RIT groups was less biodegradable, with lower protein content and higher humus content. Mechanistic analyses indicated that RIT exposure reduced the abundance of hydrolyzers and inhibited carbohydrate metabolism, resulting in an increased humification index in the RIT groups. In addition, the expression of genes associated with the synthesis of VFAs was also significantly reduced in the RIT groups, leading to a decrease in both the amount and type of VFAs. This study provides a novel perspective on the effects of emerging contaminants on WAS treatment processes and pollution prevention.
Collapse
Affiliation(s)
- Ruming Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhuoqin Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jiamiao Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
2
|
Bai S, Tang Y, Geng M, Wu D, Qian J. Self-enhancement of bioenergy recovery from anaerobically digesting WAS with novel iron-based metal-organic framework assistance: Insights into electron transfer and metabolic pathways. ENVIRONMENTAL RESEARCH 2024; 263:120167. [PMID: 39419258 DOI: 10.1016/j.envres.2024.120167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Inadequate methane production and insufficient hydrolysis-acidification activity impede the practical application of anaerobic digestion (AD) of waste activated sludge (WAS). Recently, metal-organic framework (MOF) materials attains promising capability of controlling proton/electron transfer in AD processes. This study used a typical iron-based MOF and MIL-88A(Fe) to improve the methane production via digesting WAS. These materials were prepared via a one-step hydrothermal method. The findings indicated that the addition of 150 mg MIL-88A(Fe)/g WAS VS resulted in a 57.23% increase in accumulated methane production and a 43.84% increase in daily maximum methane production. The methane production rate (Rmax) also increased from 22.25 to 29.14 mL/g VS/d. The enhanced electron transfer capacity, improved hydrolysis of WAS, boosted acetate generation, and mitigated accumulation of volatile fatty acids (VFAs) collectively contributed to the better methane yield in the MIL-88A(Fe)-added system. The significant enrichment of Methanobacterium and Methanosaeta along with the up-regulation of key methanogenesis enzyme-encoding genes jointly suggested that the CO2 reduction and methanogenesis were strengthened. Moreover, MIL-88A(Fe) stimulated the production of c-type cytochrome and e-pili, facilitating direct interspecies electron transfer (DIET) between norank-f-SC-I-84 and Methanobacterium. This study provided new solutions for improving methane production and offered insights into the mechanism of enhanced methanogenesis of AD in the presence of MIL-88A(Fe).
Collapse
Affiliation(s)
- Sai Bai
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China
| | - Yuchao Tang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Mengqi Geng
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China
| | - Di Wu
- Centre for Environmental and Engineering Research, Ghent University Global Campus, Incheon, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, and Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, 9000, Belgium
| | - Jin Qian
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China.
| |
Collapse
|
3
|
Wang R, Wang Z, Yuan H, Li C, Zhu N. Mechanistic exploration of COVlD-19 antiviral drug ritonavir on anaerobic digestion through experimental validation coupled with metagenomics analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135603. [PMID: 39236545 DOI: 10.1016/j.jhazmat.2024.135603] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Aggregation of antiviral drugs (ATVs) in waste activated sludge (WAS) poses considerable environmental risk, so it is crucial to understand the behavior of these agents during WAS treatment. This study investigated the effects of ritonavir (RIT), an ATV used to treat human immunodeficiency virus infection and coronavirus disease 2019, on anaerobic digestion (AD) of WAS to reveal the mechanisms by which it interferes with anaerobic flora. The dosage influence results showed that methane production in AD of WAS decreased by 46.56 % when RIT concentration was increased to 1000 μg/kg total suspended solids (TSS). The AD staging test revealed that RIT mainly stimulated microbial synthesis of the extracellular polymeric substance (EPS), limiting organic matter solubilization. At 500 μg/kg TSS, RIT decreased CHO and CHON levels in dissolved organic matter by 23.12 % and 56.68 %, respectively, significantly reducing substrate availability to microorganisms. Metagenomic analysis of microbial functional gene sets revealed that RIT had greater inhibitory effects on protein and amino acid metabolism than on carbohydrate metabolism. Under RIT stress, methanogens switched from hydrogenotrophic and acetotrophic methanogenesis to methylotrophic and acetotrophic methanogenesis.
Collapse
Affiliation(s)
- Ruming Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhuoqin Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haiping Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
4
|
Wang X, Gong Y, Sun C, Wang Z, Sun Y, Yu Q, Zhang Y. New insights into inhibition of high Fe(III) content on anaerobic digestion of waste-activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170147. [PMID: 38242486 DOI: 10.1016/j.scitotenv.2024.170147] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The impacts of the increased iron in the waste-activated sludge (WAS) on its anaerobic digestion were investigated. It was found that low Fe(III) content (< 750 mg/L) promoted WAS anaerobic digestion, while the continual increase of Fe(III) inhibited CH4 production and total chemical oxygen demand (TCOD) removal. As the Fe(III) content increased to 1470 mg/L, methane production has been slightly inhibited about 5 % compared with the group containing 35 mg/L Fe(III). Particularly, as Fe(III) concentration was up to 2900 mg/L, CH4 production, and TCOD removal decreased by 43.6 % and 37.5 %, respectively, compared with the group with 35 mg/L Fe(III). Furthermore, the percentage of CO2 of the group with 2900 mg/L Fe(III) decreased by 52.8 % compared with the group containing 35 mg/L Fe(III). It indicated that Fe(II) generated by the dissimilatory iron reduction might cause CO2 consumption, which was confirmed by X-ray diffraction that siderite (FeCO3) was generated in the group with 2900 mg/L Fe(III). Further study revealed that Fe(III) promoted the WAS solubilization and hydrolysis, but inhibited acidification and methane production. The methanogenesis test with H2/CO2 as a substrate showed that CO2 consumption weakened hydrogenotrophic methanogenesis and then increased H2 partial pressure, further causing VFA accumulation. Microbial community analysis indicated that the abundance of hydrogen-utilizing methanogens decreased with the high Fe(III) content. Our study suggested that the increase of Fe(III) in sludge might inhibit methanogenesis by consuming or precipitating CO2. To achieve maximum bioenergy conversion, the iron content should be controlled to lower than 750 mg/L. The study may provide new insights into the mechanistic understanding of the inhibition of high Fe(III) content on the anaerobic digestion of WAS.
Collapse
Affiliation(s)
- Xuepeng Wang
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Yijing Gong
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Cheng Sun
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Zhenxin Wang
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Ye Sun
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Qilin Yu
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China.
| | - Yaobin Zhang
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| |
Collapse
|