1
|
Chang B, Lee SY, Kim JH, Lee S, Kim B, Lee YJ. Arsenic sequestration by granular coal gangue functionalized with magnesium: Effects of magnesium and insight of arsenic sorption mechanisms. CHEMOSPHERE 2024; 367:143583. [PMID: 39461443 DOI: 10.1016/j.chemosphere.2024.143583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Leveraging natural waste materials for inorganic contaminant removal in solution offers a novel approach to boost resource recycling and foster sustainable development by enhancing waste use. This research advanced the modest arsenite (As[III]) removal capacity of raw coal gangue through a magnesium-soaking and calcination-based surface modification. Batch experiments showed As(III) removal efficiency was improved from 39.8% to 89.9% after modification, independent of initial pH levels. The Langmuir model estimated the maximum sorption capacity of 0.979 mg/g for the modified coal gangue. Physicochemical analyses confirmed that the modification increased the surface area, pore volume and size of the coal gangue. Furthermore, SEM, and subsequent TEM and SAED analyses identified acicular arsenic trioxide (As2O3) on the modified gangue, enhancing As(III) removal. Variations in sorption kinetics hinted at precipitation, likely due to AsO3 polymer chains formed by As(III)'s sorption onto Mg(OH)2, created from MgO hydration in aqueous conditions. Our findings show that coal gangue has potential applications in the development of sustainable methods for waste recycling.
Collapse
Affiliation(s)
- Bongsu Chang
- Department of Earth and Environmental Sciences, Korea University, Seoul, 02841, Republic of Korea.
| | - Seon Yong Lee
- Geo-Environmental Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea.
| | - Jae-Hyun Kim
- Department of Earth and Environmental Sciences, Korea University, Seoul, 02841, Republic of Korea.
| | - Soonjae Lee
- Department of Earth and Environmental Sciences, Korea University, Seoul, 02841, Republic of Korea.
| | - Bongju Kim
- Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea.
| | - Young Jae Lee
- Department of Earth and Environmental Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Liu L, Liu C, Fu R, Nie F, Zuo W, Tian Y, Zhang J. Full-chain analysis on emerging contaminants in soil: Source, migration and remediation. CHEMOSPHERE 2024; 363:142854. [PMID: 39019170 DOI: 10.1016/j.chemosphere.2024.142854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Emerging contaminants (ECs) are gaining attention due to their prevalence and potential negative impacts on the environment and human health. This paper provides a comprehensive review of the status and trends of soil pollution caused by ECs, focusing on their sources, migration pathways, and environmental implications. Significant ECs, including plastics, synthetic polymers, pharmaceuticals, personal care products, plasticizers, and flame retardants, are identified due to their widespread use and toxicity. Their presence in soil is attributed to agricultural activities, urban waste, and wastewater irrigation. The review explores both horizontal and vertical migration pathways, with factors such as soil type, organic matter content, and moisture levels influencing their distribution. Understanding the behavior of ECs in soil is critical to mitigating their long-term risks and developing effective soil remediation strategies. The paper also examines the advantages and disadvantages of in situ and ex situ treatment approaches for ECs, highlighting optimal physical, chemical, and biological treatment conditions. These findings provide a fundamental basis for addressing the challenges and governance of soil pollution induced by ECs.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chunrui Liu
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - RunZe Fu
- Queen Mary School Hainan, Beijing University of Posts and Telecommunications, Lingshui Le'an International Education Innovation Pilot Zone, Hainan Province, 016000, China
| | - Fandi Nie
- Liaozhong District No. 1 Senior High School, No.139, Zhengfu Road, Liaozhong District, Shenyang, 110000, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
3
|
Zhang D, Jiang J, Shi H, Lu L, Zhang M, Lin J, Lü T, Huang J, Zhong Z, Zhao H. Nonionic surfactant Tween 80-facilitated bacterial transport in porous media: A nonmonotonic concentration-dependent performance, mechanism, and machine learning prediction. ENVIRONMENTAL RESEARCH 2024; 251:118670. [PMID: 38493849 DOI: 10.1016/j.envres.2024.118670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
The surfactant-enhanced bioremediation (SEBR) of organic-contaminated soil is a promising soil remediation technology, in which surfactants not only mobilize pollutants, but also alter the mobility of bacteria. However, the bacterial response and underlying mechanisms remain unclear. In this study, the effects and mechanisms of action of a selected nonionic surfactant (Tween 80) on Pseudomonas aeruginosa transport in soil and quartz sand were investigated. The results showed that bacterial migration in both quartz sand and soil was significantly enhanced with increasing Tween 80 concentration, and the greatest migration occurred at a critical micelle concentration (CMC) of 4 for quartz sand and 30 for soil, with increases of 185.2% and 27.3%, respectively. The experimental results and theoretical analysis indicated that Tween 80-facilitated bacterial migration could be mainly attributed to competition for soil/sand surface sorption sites between Tween 80 and bacteria. The prior sorption of Tween 80 onto sand/soil could diminish the available sorption sites for P. aeruginosa, resulting in significant decreases in deposition parameters (70.8% and 33.3% decrease in KD in sand and soil systems, respectively), thereby increasing bacterial transport. In the bacterial post-sorption scenario, the subsequent injection of Tween 80 washed out 69.8% of the bacteria retained in the quartz sand owing to the competition of Tween 80 with pre-sorbed bacteria, as compared with almost no bacteria being eluted by NaCl solution. Several machine learning models have been employed to predict Tween 80-faciliated bacterial transport. The results showed that back-propagation neural network (BPNN)-based machine learning could predict the transport of P. aeruginosa through quartz sand with Tween 80 in-sample (2 CMC) and out-of-sample (10 CMC) with errors of 0.79% and 3.77%, respectively. This study sheds light on the full understanding of SEBR from the viewpoint of degrader facilitation.
Collapse
Affiliation(s)
- Dong Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Jiacheng Jiang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Huading Shi
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| | - Li Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, China
| | - Ming Zhang
- Department of Environmental Science and Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Jun Lin
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Ting Lü
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Jingang Huang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Zhishun Zhong
- Guangdong Jiandi Agriculture Technology Co. Ltd., Foshan, Guangdong, 528200, China
| | - Hongting Zhao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
4
|
Kwak E, Kim JH, Choi NC, Seo E, Lee S. Longevity prediction of reactive media in permeable reactive barriers considering the contamination level and groundwater velocity at the planning site, with a focus on cadmium removal by zeolite. CHEMOSPHERE 2024; 353:141532. [PMID: 38403119 DOI: 10.1016/j.chemosphere.2024.141532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Zeolite is a versatile and effective reactive material used in permeable reactive barriers (PRBs) for remediating groundwater contaminated with heavy metals. In this study, we evaluated the influence of subsurface environmental conditions, namely contamination level (C0) and groundwater velocity (v), on predicting the longevity of zeolite for cadmium (Cd) removal. Batch experiments were performed to investigate the effect of C0 on Cd removal, and column experiments were performed to examine how Cd transportation through zeolite varies at different C0 and v. Breakthrough curves (BTCs) were analyzed with an advection-dispersion equation (ADE) coupled with nonequilibrium sorption rate models. The reaction parameters indicating the performance metrics of zeolite were determined using an iterative fitting approach-retardation factor (R), partitioning coefficient (β), and mass transfer coefficient (ω). R exhibited dependence on C0, but was unrelated to v; its rapid increase at lower C0 was explained by Langmuir sorption isotherms. β and ω, integral to sorption dynamics and mass transfer, respectively, showcased functional relationships with v. β decreased gradually as v increased, described by the nonequilibrium sorption model, whereas ω increased steadily with v, guided by the Monod function. Using the relationship of these parameters, the fate and transport of Cd within zeolite was simulated under various subsurface environmental conditions to construct the longevity prediction function. Thus, this study introduces a method for predicting the longevity of reactive materials, which can be valuable for designing PRBs with high longevity in the future.
Collapse
Affiliation(s)
- Eunjie Kwak
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Jae-Hyun Kim
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Nag-Choul Choi
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Euiyoung Seo
- Korea Mine Rehabilitation and Mineral Resources Corporation, 199, Hyeoksin-ro, Wonju-si, Gangwon-do, 26464, Republic of Korea
| | - Soonjae Lee
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|