1
|
Guo X, He Y, Zhou Y, Lai Y, Li M, Huang G, Chen B, Wang M. In situ purification of ammonium nitrogen wastewater in rare earth mine by native bacteria isolating fromoriginal mining area. BIORESOURCE TECHNOLOGY 2025; 418:131942. [PMID: 39643056 DOI: 10.1016/j.biortech.2024.131942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/16/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Ammonium sulfate ((NH4)2SO4) leaching method to extract rare earth elements (REEs) of mine has produced a large amount of NH4+-N-enriched wastewater derived from ore body, leading to many serious environmental pollution problems. This study was the first time to establish an in-situ treatment for real REEs wastewater outside and inside the ore body by an isolated indigenous microorganism. The results stated that Citrobacter sp. X-9 achieved the highest NH4+-N removal efficiency among the isolated six microbial strains. Moreover, the microbe to treat the REEs wastewater outside ore body gave the greatest NH4+-N removal efficiency under the optimized conditions in the Erlenmeyer flask (250-mL) and bioreactor (10-L). Furthermore, compared to the others' modes, the in-situ treatment by cyclic mode with Citrobacter sp. X-9 possessed superior performance in NH4+-N removal efficiency for wastewater inside of ore body, showing that the established in-situ treatment was the potential approach for REEs wastewater purification.
Collapse
Affiliation(s)
- Xu Guo
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yongjin He
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Youcai Zhou
- School of Food and Biological Engineering, Fujian Polytechnic Normal University, Fuqing 350300, China
| | - Yulin Lai
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Ming Li
- Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment of China, Beijing 100006, China
| | - Guanglu Huang
- Longyan Rare Earth Development CO., LTD., Longyan 364000, China
| | - Bilian Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Mingzi Wang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
2
|
Labara Tirado J, Herdean A, Ralph PJ. The need for smart microalgal bioprospecting. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:7. [PMID: 39815030 PMCID: PMC11735771 DOI: 10.1007/s13659-024-00487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025]
Abstract
Microalgae's adaptability and resilience to Earth's diverse environments have evolved these photosynthetic microorganisms into a biotechnological source of industrially relevant physiological functions and biometabolites. Despite this, microalgae-based industries only exploit a handful of species. This lack of biodiversity hinders the expansion of the microalgal industry. Microalgal bioprospecting, searching for novel biological algal resources with new properties, remains a low throughput and time-consuming endeavour due to inefficient workflows that rely on non-selective sampling, monoalgal culture status and outdated, non-standardized characterization techniques. This review will highlight the importance of microalgal bioprospecting and critically explore commonly employed methodologies. We will also explore current advances driving the next generation of smart algal bioprospecting focusing on novel workflows and transdisciplinary methodologies with the potential to enable high-throughput microalgal biodiscoveries. Images adapted from (Addicted04 in Wikipedia File: Australia on the globe (Australia centered).svg. 2014.; Jin et al. in ACS Appl Bio Mater 4:5080-5089, 2021; Kim et al. in Microchim Acta 189:88, 2022; Tony et al. in Lab on a Chip 15, 19:3810-3810; Thermo Fisher Scientific INC. in CTS Rotea Brochure).
Collapse
Affiliation(s)
- Joan Labara Tirado
- Faculty of Science, Climate Change Cluster (C3), Algal Biotechnology & Biosystems, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Andrei Herdean
- Faculty of Science, Climate Change Cluster (C3), Algal Biotechnology & Biosystems, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Peter J Ralph
- Faculty of Science, Climate Change Cluster (C3), Algal Biotechnology & Biosystems, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
3
|
Zheng M, Xu F, He Y, Wang G, Chen B, Wang M. A self-isolated acid-tolerant Parachlorella kessleri with high efficiency in treating rare earth mining sewage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125020. [PMID: 39322106 DOI: 10.1016/j.envpol.2024.125020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Rare earth mining sewage is a significant environmental concern due to its high acidity and ammonia nitrogen levels. Finding a sustainable and cost-effective treatment method is essential. Parachlorella kessleri FM2, a green algae strain isolated in-house, has demonstrated remarkable abilities to grow and remove ammonia nitrogen (NH4+-N) from highly acidic rare earth wastewater without the need for alkaline additives. After optimizing conditions, P. kessleri FM2 achieved an impressive NH4+-N removal rate of 7.94 mg/L/d and a removal efficiency of 98.71% in a 1.5-L photobioreactor. In semi-continuous culture, the average NH4+-N removal rate remained high at 6.67 mg/L/d. When scaled up to continuous culture in a 5-L photobioreactor, P. kessleri FM2 maintained stability with an NH4+-N removal rate of 6.79 mg/L/d. Additionally, we conducted a preliminary analysis of P. kessleri FM2's acid resistance mechanism, further highlighting its potential as a candidate for treating acidic wastewater.
Collapse
Affiliation(s)
- Mingmin Zheng
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China
| | - Fumei Xu
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China
| | - Guanshi Wang
- Department of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
4
|
Che D, Lai Y, Weng Z, Li M, Huang G, Zheng M, Wang M. Self-flocculating Spirulina platensis CMB-02 to efficiently treat ammonia nitrogen of rare earth elements wastewater. BIORESOURCE TECHNOLOGY 2024; 411:131360. [PMID: 39197660 DOI: 10.1016/j.biortech.2024.131360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
The study aimed to evaluate the cyanobacteria Spirulina platensis CMB-02 (S. platensis CMB-02) with self-flocculation properties to treat the ammonia nitrogen of rare earth elements (REEs) wastewater. The results demonstrated that S. platensis CMB-02 could effectively remove total ammonia nitrogen (TAN) and total inorganic nitrogen within 5 days. Simultaneously, a self-flocculation efficiency of 82.59 % was achieved by microalga in 30 min after wastewater treatment. The pH, tightly bound extracellular polymeric substances (TB-EPS), and cell morphology of S. platensis CMB-02 were identified as key factors influencing its self-flocculation capabilities. Moreover, the established semi-continuous process with a 20 % renewal rate showed a stable treatment effect, representing a TAN degradation rate of 10.9 mg/(L·d). These obtained findings could conclude that the developed approach mediated with self-flocculating S. platensis CMB-02 was a promising way for REEs wastewater treatment.
Collapse
Affiliation(s)
- Dandan Che
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Yulin Lai
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Ziqi Weng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Ming Li
- Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment of China, Beijing 100006, China
| | - Guanglu Huang
- Longyan rare earth development CO., LTD., Longyan 364000, China
| | - Mingmin Zheng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117,China
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117,China.
| |
Collapse
|
5
|
Quartaroli L, Sakamoto PB, Moruzzi RB, da Silva GHR. Microalgae separation in MP-PVC contaminated wastewater using plant-based coagulant over different extraction methods in Bauru, Brazil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122713. [PMID: 39368380 DOI: 10.1016/j.jenvman.2024.122713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
This study investigates the effectiveness of coagulation-flocculation and sedimentation (CFS) for separating microalgae, focusing on the use of various Moringa oleifera extracts as natural coagulants. We examined photobioreactor effluent (PBR) both with and without microplastic PVC (MP-PVC) contamination, referred to as PBR R2 and PBR R1, respectively. Utilising response surface methodology, we identified optimal conditions for the removal of microalgae and MP-PVC. Validation tests demonstrated that the aqueous extract of delipidated Moringa oleifera powder (AEDMOP) achieved high removal efficiencies, with coagulant dosages of 630 mg L-1 for PBR R1 and 625 mg L-1 for PBR R2. Both conditions showed microalgae removal efficiencies exceeding 83% for turbidity, colour, OD540 nm, OD680 nm, and OD750 nm, and 63% for OD254 nm. Interestingly, the optimised conditions for PBR R2 required slightly less coagulant, likely due to the additional particulate matter from MP-PVC. While extracellular polymeric substances (EPS) exhibited a marginal effect on flocculation, further investigation into their role in CFS is necessary. Our findings highlight the potential of AEDMOP for efficient microalgae separation, even in the presence of microplastics.
Collapse
Affiliation(s)
- Larissa Quartaroli
- Bauru College of Engineering, Department of Civil and Environmental Engineering, São Paulo State University (UNESP), Av. Engenheiro Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, 17033-360, Bauru, SP, Brazil.
| | - Patrícia Bragança Sakamoto
- Bauru College of Engineering, Department of Civil and Environmental Engineering, São Paulo State University (UNESP), Av. Engenheiro Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, 17033-360, Bauru, SP, Brazil.
| | - Rodrigo Braga Moruzzi
- Science and Technology Institute of São José dos Campos, Department of Environmental Engineering, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777, Jardim São Dimas, 12245-000, São José dos Campos, SP, Brazil.
| | - Gustavo Henrique Ribeiro da Silva
- Bauru College of Engineering, Department of Civil and Environmental Engineering, São Paulo State University (UNESP), Av. Engenheiro Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, 17033-360, Bauru, SP, Brazil.
| |
Collapse
|
6
|
Vo PHN, Kuzhiumparambil U, Kim M, Hinkley C, Pernice M, Nghiem LD, Ralph PJ. Biomining using microalgae to recover rare earth elements (REEs) from bauxite. BIORESOURCE TECHNOLOGY 2024; 406:131077. [PMID: 38971386 DOI: 10.1016/j.biortech.2024.131077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/09/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Biomining using microalgae has emerged as a sustainable option to extract rare earth elements (REEs). This study aims to (i) explore the capability of REEs recovery from bauxite by microalgae, (ii) assess the change of biochemical function affected by bauxite, and (iii) investigate the effects of operating conditions (i.e., aeration rate, pH, hydraulic retention time) to REEs recovery. The results showed that increasing bauxite in microalgae culture increases REEs recovery in biomass and production of biochemical compounds (e.g., pigments and Ca-Mg ATPase enzyme) up to 10 %. The optimum pulp ratio of bauxite in the microalgae culture ranges from 0.2 % to 0.6 %. Chlorella vulgaris was the most promising, with two times higher in REEs recovery in biomass than the other species. REEs accumulated in microalgae biomass decreased with increasing pH in the culture. This study establishes a platform to make the scaling up of REEs biomining by microalgae plausible.
Collapse
Affiliation(s)
- Phong H N Vo
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | | | - Mikael Kim
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Cora Hinkley
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
7
|
Hu J, Wan K, Deng X, Liu X, Fang Y, Zhou F, Yu J, Chi R, Xiao C. Metagenomic analysis revealed the evolution of microbial communities, metabolic pathways, and functional genes in the heterotrophic nitrification-aerobic denitrification process under La 3+ stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169243. [PMID: 38101649 DOI: 10.1016/j.scitotenv.2023.169243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Trivalent lanthanum (La3+) exists widely in ammonia nitrogen (NH4+-N) tailing water from ionic rare earth mines; however, its effect on heterotrophic nitrification-aerobic denitrification (HN-AD) is unknown, thereby limiting the application of the HN-AD process in this field. In this study, we conducted an HN-AD process using a sequencing batch reactor (5 L) that was continuously operated to directly treat acidic (NH4)2SO4 wastewater (influent NH4+-N concentration of approximately 110 mg/L and influent pH of 5) containing different La3+ concentrations (0-100 mg/L). The NH4+-N removal efficiency of the reactor reached 98.25 % at a La3+ concentration of 100 mg/L. The reactor was in a neutral-to-alkaline environment, which favored La3+ precipitation and complexation. Metagenomic analysis revealed that the relative abundance of Thauera in the reactor remained high (88.62-92.27 %) under La3+ stress. The relative abundances of Pannonobacter and Hyphomonas significantly increased, whereas that of Azoarcus significantly decreased. Metabolic functions in the reactor were mainly contributed by Thauera, and the abundance of metabolic functions under low La3+ stress (≤5 mg/L) significantly differed from that under high La3+ stress (≥10 mg/L). The relative abundance of ammonia assimilation-related genes in the reactor was high and significantly correlated with ammonia removal. However, traditional ammonia oxidation genes were not annotated, and unknown ammonia oxidation pathways may have been present in the reactor. Moreover, La3+ stimulated amino acid biosynthesis and translocation, the citrate cycle, sulfur metabolism, and oxidative phosphorylation and promoted the overproduction of extracellular polymeric substances, which underwent complexation and adsorbed La3+ to reduce its toxicity. Our results showed that the HN-AD process had a strong tolerance to La3+, stable NH4+-N removal efficiency, the potential to recover La3+, and considerable application prospects in treating NH4+-N tailing water from ionic rare earth mines.
Collapse
Affiliation(s)
- Jingang Hu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Kai Wan
- Hubei Three Gorges Laboratory, Yichang 443007, China
| | - Xiangyi Deng
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xuemei Liu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yun Fang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fang Zhou
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Junxia Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ruan Chi
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Three Gorges Laboratory, Yichang 443007, China
| | - Chunqiao Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Three Gorges Laboratory, Yichang 443007, China.
| |
Collapse
|
8
|
Vo PHN, Danaee S, Hai HTN, Huy LN, Nguyen TAH, Nguyen HTM, Kuzhiumparambil U, Kim M, Nghiem LD, Ralph PJ. Biomining for sustainable recovery of rare earth elements from mining waste: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168210. [PMID: 37924876 DOI: 10.1016/j.scitotenv.2023.168210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Rare earth elements (REEs) are essential for advanced manufacturing (e.g., renewable energy, military equipment, electric vehicles); hence, the recovery of REEs from low-grade resources has become increasingly important to address their growing demand. Depending on specific mining sites, its geological conditions, and sociodemographic backgrounds, mining waste has been identified as a source of REEs in various concentrations and abundance. Yttrium, cerium, and neodymium are the most common REEs in mining waste streams (50 to 300 μg/L). Biomining has emerged as a viable option for REEs recovery due to its reduced environmental impact, along with reduced capital investment compared to traditional recovery methods. This paper aims to review (i) the characteristics of mining waste as a low-grade REEs resource, (ii) the key operating principles of biomining technologies for REEs recovery, (iii) the effects of operating conditions and matrix on REEs recovery, and (iv) the sustainability of REEs recovery through biomining technologies. Six types of biomining will be examined in this review: bioleaching, bioweathering, biosorption, bioaccumulation, bioprecipitation and bioflotation. Based on a SWOT analyses and techno-economic assessments (TEA), biomining technologies have been found to be effective and efficient in recovering REEs from low-grade sources. Through TEA, coal ash has been shown to return the highest profit amongst mining waste streams.
Collapse
Affiliation(s)
- Phong H N Vo
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia.
| | - Soroosh Danaee
- Biotechnology Department, Iranian Research Organization for Science and Technology, Tehran 3353-5111, Iran
| | - Ho Truong Nam Hai
- Faculty of Environment, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City 700000, Viet Nam
| | - Lai Nguyen Huy
- Environmental Engineering and Management, Asian Institute of Technology, Klongluang, Pathumthani, Thailand
| | - Tuan A H Nguyen
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hong T M Nguyen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Queensland 4102, Australia
| | - Unnikrishnan Kuzhiumparambil
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Mikael Kim
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Peter J Ralph
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|