1
|
Yang H, Zhang F, Chen Y, Xie Y, Wang R, He Y, Song P. Xanthan gum/ZrMOF biodegradable gel fertilizer: Sustainable water retention and crop growth. Int J Biol Macromol 2025; 291:138969. [PMID: 39708874 DOI: 10.1016/j.ijbiomac.2024.138969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
To address the problems of ecological pollution and food safety caused by the excessive use of chemical fertilizers in modern agriculture, it has become a hot topic of current research to develop novel low-cost, biodegradable, and efficient gel slow-release fertilizers. Herein, using xanthan gum and ZrMOF as raw materials, urea as a nutrient, acrylic acid and itaconic acid as co-monomers, a novel ZrMOF gel slow-release fertilizer (ZrMOF@CpM) was prepared by free radical copolymerization. After being characterized, its swelling and water retention properties and slow-release behavior were investigated. It was demonstrated that ZrMOF@CpM with a high surface area and mesoporous structure provided rich water and fertilizer channels for slow-release fertilizer. Therefore, beside good water absorption (260.7 g/g) and water retention, its nutrient (N) slow-release performance (45 d, 49.1 %) was in accordance with the Committee for European Normalization (CEN) standards. The slow-release gel fertilizer also showed good degradation performance (35 d, 56.9 %). Additionally, maize pot trials showed that the synthesized slow-release fertilizer materials significantly promoted plant root and leaf growth. Overall, we provide a new strategy for the construction of high-efficiency, high-water retention and biodegradable agricultural gel slow-release fertilizers.
Collapse
Affiliation(s)
- Hua Yang
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Feng Zhang
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yuanyuan Chen
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yuanyuan Xie
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Rongmin Wang
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Yufeng He
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Pengfei Song
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
2
|
Yi H, Gao B, Zhang X, Liang Y, Zhang J, Su J. Application of waste eggshells elevates phytoremediation efficiency of Pb-Zn mine-contaminated farmland and mitigates soil greenhouse gas emissions: A field study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122947. [PMID: 39423615 DOI: 10.1016/j.jenvman.2024.122947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Remediating heavy metal (HM)-contaminated farmlands and sequestering soil carbon for emission reduction have been prominent topics in environmental research in recent years. However, few studies have looked into the soil greenhouse gas (GHG) impacts of growing hyperaccumulators in composite HM-contaminated farmland, as well as agronomic measures to remediate soil HMs while mitigating GHG emissions. To investigate fertilization measures to improve phytoremediation efficiency and mitigate GHG emissions, S. photeinocarpum was planted with three different fertilization measures on farmland contaminated by lead-zinc (Pb-Zn) mines (1200 kg ha-1 eggshell, 125 kg ha-1 28-homobrassinolide, and 16.7 kg ha-1 mineral potassium fulvic acid) during its growth period. The findings are as follows: Eggshell application significantly enhanced the translocation factor (TF) of Pb, Zn, and cadmium (Cd) from the roots to the shoots of Solanum photeinocarpum. Moreover, eggshells notably increased the bioaccumulation factor (BCF) of Cd and Pb in plant shoots by 120.75% and 159.09%, respectively. Regarding GHG emissions, the combined application of eggshells and 28-homobrassinolide substantially lowered the global warming potential (GWP) of the soil. Correlation analyses revealed that eggshell application increased the relative abundance of the Gemmatimonadota bacterial phylum in the soil, facilitating Pb and Cd migration from the roots to shoot tissues in S. photeinocarpum. Eggshell use inhibited nitrate nitrogen (NO3--N) transformation into nitrous oxide (N2O) by the Myxococcota bacterial phylum and reduced N2O release from the soil. The application of low-cost eggshells can achieve a win-win situation of soil HM remediation and GHG emission reduction, as well as provide simple and scalable management measures for HM-contaminated farmland.
Collapse
Affiliation(s)
- Haifeng Yi
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Bo Gao
- College of Tourism & Landscape Architecture, Guilin University of Technology, Guilin, 541004, China; College of Plant and Ecological Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xingfeng Zhang
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| | - Yexi Liang
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Jie Zhang
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Jiaohui Su
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
3
|
Huang H, Luo J, Ma R, Zhang D, Sun S, Du C. Review on microwave immobilization of soil heavy metals: Processes and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122824. [PMID: 39378819 DOI: 10.1016/j.jenvman.2024.122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Soil contamination with heavy metals (HMs) is still a global issue. The maintenance of long-term stability of HMs in soil during immobilization remediation is a challenge. Microwave (MW) technology can promote the immobilization of HMs in the form of crystals and minerals, thus enhancing their resistance of corrosion. This review provides a comprehensive introduction to the basics of MW irradiation through 177 papers, and reviews the research progress of MW involvement in the immobilization of soil HMs in 10 years. The effects of MW parameter settings, absorber/fixative types and soil physicochemical properties on immobilized HMs are investigated. The immobilization mechanisms of HMs are discussed, high-temperature physical encapsulation and chemical stabilization are the two basic mechanisms in the immobilization process. MW has a unique heating method to achieve efficient remediation by shortening remediation time, reducing the activation energy of reactions and promoting the transformation of stabilization products. Finally, the current limitations of MW in the remediation of HMs contaminated soils are systematically discussed and the corresponding proposed solutions are presented which may provide directions for further laboratory studies. There are still serious problems in taking the results obtained in the laboratory to the full scale. Thus, process optimization, scale-up, design and demonstration are strongly desired. In summary, this review may help new researchers to seize the research frontier in MW and can serve as a reference for future development of MW technology in soil remediation.
Collapse
Affiliation(s)
- Huiyin Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Juan Luo
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dengcai Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shichang Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Chaoyong Du
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
4
|
Rudmin M, Makarov B, López-Quirós A, Maximov P, Lokteva V, Ibraeva K, Kurovsky A, Gummer Y, Ruban A. Preparation, Features, and Efficiency of Nanocomposite Fertilisers Based on Glauconite and Ammonium Dihydrogen Phosphate. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6080. [PMID: 37763358 PMCID: PMC10532873 DOI: 10.3390/ma16186080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
This paper studies the chemical and mechanochemical preparation of glauconite with ammonium dihydrogen phosphate (ADP) nanocomposites with a ratio of 9:1 in the vol.% and wt.%, respectively. The methods include X-ray diffraction analysis, scanning electron microscope with energy-dispersive X-ray spectroscopy, transmission electron microscopy, infrared spectroscopy, and differential thermal analysis with a quadruple mass spectrometer. The manufactured nanocomposites keep the flaky glauconite structure. Some glauconite unit structures have been thickened due to minimal nitrogen (ammonium) intercalation into the interlayer space. The globular, granular, or pellet mineral particles of nanocomposites can be preserved via chemical techniques. Globular and micro-aggregate particles in nanocomposites comprise a thin film of adsorbed ADP. The two-step mechanochemical method makes it possible to slightly increase the proportion of adsorbed (up to 3.2%) and intercalated (up to 6.0%) nutrients versus chemical ways. Nanocomposites prepared via chemical methods consist of glauconite (90%), adsorbed (1.8-3.6%), and intercalated (3.0-3.7%) substances of ADP. Through the use of a potassium-containing clay mineral as an inhibitor, nitrogen, phosphorus, and potassium (NPK), nanocomposite fertilisers of controlled action were obtained. Targeted and controlled release of nutrients such as phosphate, ammonium, and potassium are expected due to various forms of nutrients on the surface, in the micropores, and in the interlayer space of glauconite. This is confirmed via the stepwise dynamics of the release of ammonium, nitrate, potassium, and phosphate from their created nanocomposites. These features of nanocomposites contribute to the stimulation of plant growth and development when fertilisers are applied to the soil.
Collapse
Affiliation(s)
- Maxim Rudmin
- School of Earth Science & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia; (B.M.); (P.M.); (A.R.)
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, 625003 Tyumen, Russia
| | - Boris Makarov
- School of Earth Science & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia; (B.M.); (P.M.); (A.R.)
| | - Adrián López-Quirós
- Department of Stratigraphy and Paleontology, University of Granada, 18071 Granada, Spain
| | - Prokopiy Maximov
- School of Earth Science & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia; (B.M.); (P.M.); (A.R.)
| | - Valeria Lokteva
- School of Earth Science & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia; (B.M.); (P.M.); (A.R.)
| | - Kanipa Ibraeva
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, 625003 Tyumen, Russia
| | - Alexander Kurovsky
- Department of Plant Physiology and Biotechnology, Biological Institute, Tomsk State University, 634050 Tomsk, Russia; (A.K.)
| | - Yana Gummer
- Department of Plant Physiology and Biotechnology, Biological Institute, Tomsk State University, 634050 Tomsk, Russia; (A.K.)
| | - Alexey Ruban
- School of Earth Science & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia; (B.M.); (P.M.); (A.R.)
| |
Collapse
|
5
|
Channab BE, El Idrissi A, Zahouily M, Essamlali Y, White JC. Starch-based controlled release fertilizers: A review. Int J Biol Macromol 2023; 238:124075. [PMID: 36940767 DOI: 10.1016/j.ijbiomac.2023.124075] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Starch, as a widely available renewable resource, has the potential to be used in the production of controlled-release fertilizers (CRFs) that support sustainable agriculture. These CRFs can be formed by incorporating nutrients through coating or absorption, or by chemically modifying the starch to enhance its ability to carry and interact with nutrients. This review examines the various methods of creating starch-based CRFs, including coating, chemical modification, and grafting with other polymers. In addition, the mechanisms of controlled release in starch-based CRFs are discussed. Overall, the potential benefits of using starch-based CRFs in terms of resource efficiency and environmental protection are highlighted.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco.
| | - Ayoub El Idrissi
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco
| | - Mohamed Zahouily
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Younes Essamlali
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States.
| |
Collapse
|
6
|
Lin Z, Zheng C, Ren J, Zhu A, He C, Pan H. Synthesizing sulfidated zero-valent iron for enhanced Cr(VI) removal: Impact of sulfur precursors on physicochemical properties. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
7
|
Li J, Wang M, Zhao X, Li Z, Niu Y, Wang S, Sun Q. Efficient Iodine Removal by Porous Biochar-Confined Nano-Cu 2O/Cu 0: Rapid and Selective Adsorption of Iodide and Iodate Ions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13030576. [PMID: 36770537 PMCID: PMC9919420 DOI: 10.3390/nano13030576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 06/01/2023]
Abstract
Iodine is a nuclide of crucial concern in radioactive waste management. Nanomaterials selectively adsorb iodine from water; however, the efficient application of nanomaterials in engineering still needs to be developed for radioactive wastewater deiodination. Artemia egg shells possess large surface groups and connecting pores, providing a new biomaterial to remove contaminants. Based on the Artemia egg shell-derived biochar (AES biochar) and in situ precipitation and reduction of cuprous, we synthesized a novel nanocomposite, namely porous biochar-confined nano-Cu2O/Cu0 (C-Cu). The characterization of C-Cu confirmed that the nano-Cu2O/Cu0 was dispersed in the pores of AES biochar, serving in the efficient and selective adsorption of iodide and iodate ions from water. The iodide ion removal by C-Cu when equilibrated for 40 min exhibited high removal efficiency over the wide pH range of 4 to 10. Remarkable selectivity towards both iodide and iodate ions of C-Cu was permitted against competing anions (Cl-/NO3-/SO42-) at high concentrations. The applicability of C-Cu was demonstrated by a packed column test with treated effluents of 1279 BV. The rapid and selective removal of iodide and iodate ions from water is attributed to nanoparticles confined on the AES biochar and pore-facilitated mass transfer. Combining the advantages of the porous biochar and nano-Cu2O/Cu0, the use of C-Cu offers a promising method of iodine removal from water in engineering applications.
Collapse
|