1
|
Nguyen MV, Nguyen Thanh P, Nguyen MP, Pham Thi H, Dang NM. Effective approach for removing antibiotic residues from wastewater using Bi 2O 3@C 3N 4 photocatalyst. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2025; 60:121-128. [PMID: 39916492 DOI: 10.1080/03601234.2025.2459996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/24/2025] [Indexed: 05/08/2025]
Abstract
This study explores the photocatalytic decomposition of antibiotic residues, including tetracycline (TCR) and amoxicillin (AMR), from wastewater using Bi2O3@C3N4 photocatalyst. The characterization findings revealed that Bi2O3@C3N4 exhibited significantly improved light absorption properties and enhanced charge separation efficiency. According to the experimental results, Bi2O3@C3N4 exhibited high degradation efficiencies of 77.6% for TCR and 83.2% for AMR in wastewater samples. It also displayed excellent reusability, with the removal efficiencies of TCR and AMR remaining at 71.3 and 78.8%, respectively, after five cycles. Additionally, the photodegradation of TCR and AMR using Bi2O3@C3N4 is suggested to follow the Z-scheme pathway. The results of this study could be utilized for removing antibiotic pollutants from wastewater, thereby reducing their impact on human health and the environment.
Collapse
Affiliation(s)
- Minh Viet Nguyen
- VNU Key Laboratory of Advanced Material for Green Growth, Faculty of Chemistry, VNU University of Science, Hanoi, Vietnam
| | - Phong Nguyen Thanh
- Laboratory of Environmental Sciences and Climate Change, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam
- Faculty of Environment, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | | | - Huong Pham Thi
- Laboratory of Environmental Sciences and Climate Change, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam
- Faculty of Environment, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Nhat Minh Dang
- VNU Key Laboratory of Advanced Material for Green Growth, Faculty of Chemistry, VNU University of Science, Hanoi, Vietnam
| |
Collapse
|
2
|
Karthik AS, Agrawal S, Senthil S, Debnath A, Devanesan S, Zohier AEA, Vignesh S. One-pot synthesis of g-C 3N 4/N-doped CeO 2 nanocomposites and their potential visible light-driven photocatalytic degradation of methylene blue dye. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:246. [PMID: 38864996 DOI: 10.1007/s10653-024-02007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 06/13/2024]
Abstract
In the pursuit of efficient photocatalytic materials for environmental applications, a new series of g-C3N4/N-doped CeO2 nanocomposites (g-C3N4/N-CeO2 NCs) was synthesized using a straightforward dispersion method. These nanocomposites were systematically characterized to understand their structural, optical, and chemical properties. The photocatalytic performance of g-C3N4/N-CeO2 NCs was evaluated by investigating their ability to degrade methylene blue (MB) dye, a model organic pollutant. The results demonstrate that the integration of g-C3N4 with N-doped CeO2 NCs reduces the optical energy gap compared to pristine N-doped CeO2, leading to enhanced photocatalytic efficiency. It is benefited from the existence of g-C3N4/N-CeO2 NCs not only in promoting the charge separation and inhibits the fast charge recombination but also in improving photocatalytic oxidation performance. Hence, this study highlights the potential of g-C3N4/N-CeO2 NCs as promising candidates for various photocatalytic applications, contributing to the advancement of sustainable environmental remediation technologies.
Collapse
Affiliation(s)
- A S Karthik
- Department of Chemistry, Government Arts College (A), Salem, Tamilnadu, 636007, India
- Department of Chemistry, Arignar Anna Government Arts College, Attur, Tamilnadu, 636121, India
| | - Smita Agrawal
- Department of Horticulture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, Madhya Pradesh, 474002, India
| | - S Senthil
- Department of Chemistry, Government Arts College (A), Salem, Tamilnadu, 636007, India.
| | - Abhijit Debnath
- Department of Horticulture, Krishi Vigyan Kendra, Dhalai, Tripura, 799278, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Ahmed E A Zohier
- Department of Science Technology and Innovation Unit, King Saud University, P. O. Box-2454, 11451, Riyadh, Saudi Arabia
| | - S Vignesh
- Department of Applied Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
3
|
Zang S, Cai X, Zang Y, Jing F, Lu Y, Tang S, Lin F, Mo L. ZnIn 2S 4 Heterojunctions Constructed with In-MOF Precursor for Photocatalytic Hydrogen Evolution without Cocatalysts. Inorg Chem 2024; 63:6546-6554. [PMID: 38535616 DOI: 10.1021/acs.inorgchem.4c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Znln2S4 has great prospects for photocatalytic water splitting to hydrogen by visible light. Herein, a novel Znln2S4-In-MOF (ZnInMS4) photocatalyst is elaborately synthesized by in situ method with In-MOF as the template and In3+ as the source. ZnInMS4 overcomes the fast interface charge recombination and a sluggish charge lifetime via the formed heterojunctions. Photoelectrochemical measurements reveal that the charge-transfer kinetics is enhanced since In-MOF is introduced to act as a reliable charge-transport channel. ZnInMS4 exhibits outstanding cocatalyst-free H2 evolution rate of 70 μmol h-1 under irradiation (λ > 420 nm), which is 3.2-fold higher than that of Znln2S4. In addition, the ZnInMS4 photocatalyst shows good stability in the 16 h continuous reaction. This work illustrates the feasibility of the MOF precursor instead of inorganic salts to directly synthesize photocatalysts with high performance.
Collapse
Affiliation(s)
- Shaohong Zang
- Donghai Laboratory, Zhoushan 316021, China
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Xiaorong Cai
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Yixian Zang
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Fei Jing
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Youwei Lu
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Shuting Tang
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Feng Lin
- College of Chemical and Materials Engineering, Quzhou University, Quzhou 324000, China
| | - Liuye Mo
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| |
Collapse
|
4
|
Ma D, Tang J, He G, Pan S. Investigation of the Photocatalytic Performance, Mechanism, and Degradation Pathways of Rhodamine B with Bi 2O 3 Microrods under Visible-Light Irradiation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:957. [PMID: 38399207 PMCID: PMC10890279 DOI: 10.3390/ma17040957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
In the present work, the photodegradation of Rhodamine B with different pH values by using Bi2O3 microrods under visible-light irradiation was studied in terms of the dye degradation efficiency, active species, degradation mechanism, and degradation pathway. X-ray diffractometry, polarized optical microscopy, scanning electron microscopy, fluorescence spectrophotometry, diffuse reflectance spectra, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, UV-visible spectrophotometry, total organic carbon, and liquid chromatography-mass spectroscopy analysis techniques were used to analyze the crystal structure, morphology, surface structures, band gap values, catalytic performance, and mechanistic pathway. The photoluminescence spectra and diffuse reflectance spectrum (the band gap values of the Bi2O3 microrods are 2.79 eV) reveals that the absorption spectrum extended to the visible region, which resulted in a high separation and low recombination rate of electron-hole pairs. The photodegradation results of Bi2O3 clearly indicated that Rhodamine B dye had removal efficiencies of about 97.2%, 90.6%, and 50.2% within 120 min at the pH values of 3.0, 5.0, and 7.0, respectively. In addition, the mineralization of RhB was evaluated by measuring the effect of Bi2O3 on chemical oxygen demand and total organic carbon at the pH value of 3.0. At the same time, quenching experiments were carried out to understand the core reaction species involved in the photodegradation of Rhodamine B solution at different pH values. The results of X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffractometer analysis of pre- and post-Bi2O3 degradation showed that BiOCl was formed on the surface of Bi2O3, and a BiOCl/Bi2O3 heterojunction was formed after acid photocatalytic degradation. Furthermore, the catalytic degradation of active substances and the possible mechanism of the photocatalytic degradation of Rhodamine B over Bi2O3 at different pH values were analyzed based on the results of X-ray diffractometry, radical capture, Fourier-transform infrared spectroscopy, total organic carbon analysis, and X-ray photoelectron spectroscopy. The degradation intermediates of Rhodamine B with the Bi2O3 photocatalyst in visible light were also identified with the assistance of liquid chromatography-mass spectroscopy.
Collapse
Affiliation(s)
- Dechong Ma
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
- Key Laboratory of Low Carbon and Environmental Functional Materials of College of Hunan Province, Hunan City University, Yiyang 413000, China
| | - Jiawei Tang
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Guowen He
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
- Key Laboratory of Low Carbon and Environmental Functional Materials of College of Hunan Province, Hunan City University, Yiyang 413000, China
| | - Sai Pan
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
- Key Laboratory of Low Carbon and Environmental Functional Materials of College of Hunan Province, Hunan City University, Yiyang 413000, China
| |
Collapse
|
5
|
Shanmugam P, Parasuraman B, Boonyuen S, Thangavelu P, AlSalhi MS, Zheng ALT, Viji A. Hydrothermal synthesis and photocatalytic application of ZnS-Ag composites based on biomass-derived carbon aerogel for the visible light degradation of methylene blue. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:92. [PMID: 38367085 DOI: 10.1007/s10653-024-01871-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 02/19/2024]
Abstract
A facile and cost-effective hydrothermal followed by precipitation method is employed to synthesize visible light-driven ZnS-Ag ternary composites supported on carbon aerogel (CA). Extensive studies were conducted on the structural, morphological, and optical properties, confirming the successful formation of ternary nanocomposites. The obtained results evidently demonstrate the successful loading of ZnS and Ag onto the surface of the CA. High-resolution transmission electron microscopy analysis revealed that ZnS and Ag nanoparticles (AgNPs) were uniformly distributed on the surface of the CA with an average diameter of 18 nm. The biomass-derived CA, containing a hierarchical porous nano-architecture and an abundant number of -NH2 functional groups on the surface, can greatly prevent the agglomeration, stability and reduce particle size. Brunauer-Emmett-Teller analysis results indicated specific surface areas of 4.62 m2 g-1 for the CA, 48.50 m2 g-1 for the CA/ZnS composite, and 62.62 m2 g-1 for the CA/ZnS-Ag composite. These values demonstrate an increase in surface area upon the incorporation of ZnS and Ag into the CA matrix. Under visible light irradiation, the synthesized CA/ZnS-Ag composites displayed remarkably improved photodegradation efficiency of methylene blue (MB). Among the tested samples, the CA/ZnS-Ag composites exhibited the highest percentage of photodegradation efficiency, surpassing ZnS, CA, and CA/ZnS. The obtained percentages of degradation efficiency for CA, ZnS, CA/ZnS, and CA/ZnS-Ag composites were determined as 26.60%, 52.12%, 68.39%, and 98.64%, respectively. These results highlight the superior photocatalytic performance of the CA/ZnS-Ag composites in the degradation of MB under visible light conditions. The superior efficiency of the CA/ZnS-Ag composite can be attributed to multiple factors, including its elevated specific surface area, inhibition of electron-hole pair recombination, and enhanced photon absorption within the visible light spectrum. The CA/ZnS-Ag composites displayed consistent efficiency over multiple cycles, confirming their stable performance, reusability, and enduring durability, thereby showcasing the robust nature of this composite material.
Collapse
Affiliation(s)
- Paramasivam Shanmugam
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand
| | - Balaji Parasuraman
- Smart Materials Laboratory, Department of Physics, Periyar University, Salem, Tamilnadu, 636011, India
| | - Supakorn Boonyuen
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand.
| | - Pazhanivel Thangavelu
- Smart Materials Laboratory, Department of Physics, Periyar University, Salem, Tamilnadu, 636011, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Alvin Lim Teik Zheng
- Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia Bintulu Campus, Bintulu, Sarawak, Malaysia
| | - A Viji
- Department of Physics, Kongunadu College of Engineering and Technology, Thottiyam, Tamil Nadu, 621215, India
| |
Collapse
|
6
|
Suganthi S, Vignesh S, Kalyana Sundar J, Alqarni SA, Pandiaraj S, Hwan Oh T. Cobalt oxide coupled with graphitic carbon nitride composite heterojunction for efficient Z-scheme photocatalytic environmental pollutants degradation performance. ENVIRONMENTAL RESEARCH 2023; 235:116574. [PMID: 37423360 DOI: 10.1016/j.envres.2023.116574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
The Co3O4/g-C3N4 Z-scheme composite heterojunction has been effectively built in a facile sonication-assisted hydrothermal manner. The as-synthesized optimal 0.2 M Co3O4/g-C3N4 (GCO2) composite photocatalysts (PCs) revealed admirable degradation efficiency towards methyl orange (MO, 65.1%) and methylene blue (MB, 87.9%) organic pollutant compared with bare g-C3N4 within 210 min under light irradiation. Besides, the features of investigating structural, morphological and optical properties have evidence that the unique decoration effect of Co3O4 nanoparticles (NPs) on the g-C3N4 structure with intimate interface heterojunction of well-matched band structures noticeably facilitates the photo-generated charge transport/separation efficiency, reduces the recombination rates and widens the visible-light fascination which could advantageous to upgrading photocatalytic action with superior redox ability. Especially, the probable Z-scheme photocatalytic mechanism pathway is also elucidated in detail based on the quenching results. Hence, this work delivers a facile and hopeful candidate for contaminated water remediation via visible-light photocatalysis over the efficient g-C3N4-based catalysts.
Collapse
Affiliation(s)
- Sanjeevamuthu Suganthi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Shanmugam Vignesh
- Materials Science Research Laboratory, Department of Physics, Periyar University, Salem, 636 011, Tamil Nadu, India.
| | - Jeyaperumal Kalyana Sundar
- Materials Science Research Laboratory, Department of Physics, Periyar University, Salem, 636 011, Tamil Nadu, India
| | | | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
7
|
Xian T, Ma K, Di L, Ma X, Sun X, Yang H. Non-noble-metal TiC-nanoparticle-promoted charge separation and photocatalytic degradation performance on Bi 2O 3 microrods: degradation pathway and mechanism investigation. Phys Chem Chem Phys 2023; 25:25214-25228. [PMID: 37724982 DOI: 10.1039/d3cp03740a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
In the present work, a promising binary TiC/Bi2O3 photocatalyst was obtained via a simple hydrothermal route. In the photodegradation experiment of acid orange 7 (AO7) and tetracycline (TC) irradiated by simulated sunlight, the attachment of TiC nanoparticles on the Bi2O3 microrods leads to an obvious improvement in the photocatalytic removal properties of the Bi2O3 microrods. The optimal removal efficiency of AO7 was achieved by the 7.5%TiC/Bi2O3 sample, which results in about 91.5% dye removal within 75 min of reaction. Meanwhile, the 7.5%TiC/Bi2O3 sample also exhibits favorable photodegradation performance for the degradation of TC, leading to about ∼76.9% TC being degraded after 75 min of irradiation. More importantly, the degradation pathways of AO7 and toxicity analysis of the intermediate products were performed based on liquid chromatography-mass spectrometry detection and theoretical simulation. The superior photocatalytic behavior of the TiC/Bi2O3 composite is attributed to the effective separation and migration of photoexcited electrons and holes in the heterojunction, where the TiC nanoparticles act as an acceptor of photoexcited electrons.
Collapse
Affiliation(s)
- Tao Xian
- College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810008, China.
| | - Ke Ma
- College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810008, China.
| | - Lijing Di
- College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810008, China.
| | - Xuelian Ma
- College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810008, China.
| | - Xiaofeng Sun
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hua Yang
- School of Science, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
8
|
Suganthi S, Vignesh S, Raj V, Manoharadas S, Pandiaraj S, Kim H. Synergistic influence of vanadium pentoxide-coupled graphitic carbon nitride composite for photocatalytic degradation of organic pollutant: Stability and involved Z-scheme mechanism. ENVIRONMENTAL RESEARCH 2023; 231:116288. [PMID: 37263474 DOI: 10.1016/j.envres.2023.116288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/21/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
The removal of dyes from wastewater by photocatalytic technologies has received substantial attention in recent years. In the present study, novel Z-scheme V2O5/g-C3N4 photocatalytic composites were organized via simple hydrothermal processes and a sequence of several characterization aspects. The degradation results showed that the optimum Z-scheme GVO2 heterostructure composite photocatalysts (PCs) had a better efficiency (90.1%) and an apparent rate (0.0136 min-1) for the methylene blue (MB) aqueous organic dye degradation, which was about 6.18-fold higher than that of pristine GCN catalyst. Meanwhile, the GVO2 heterostructured PCs showed better recycling stability after five consecutive tests. Moreover, the free radical trapping tests established that •O2- and h+ species were the prime reactive species in the photocatalytic MB degradation process in the heterostructured PCs. The photocatalytic enhanced activity was primarily recognized as the synergistic interfacial construction of the Z-scheme heterojunctions among V2O5 and GCN, which improved the separation/transfer, lower recombination rate, extended visible-light utilization ability, and enhanced reaction rate. Therefore, the existing study affords a simple tactic for the development of a direct Z-scheme for photocatalytic heterojunction nanomaterials for potential environmental remediation applications.
Collapse
Affiliation(s)
- Sanjeevamuthu Suganthi
- Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Salem, 636 011, Tamil Nadu, India.
| | - Shanmugam Vignesh
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Vairamuthu Raj
- Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. BOX 2454, Riyadh, Saudi Arabia
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Haekyoung Kim
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
9
|
Gong D, Guo J, Wang F, Zhang J, Song S, Feng B, Zhang X, Zhang W. Green construction of metal- and additive-free citrus peel-derived carbon dot/g-C 3N 4 photocatalysts for the high-performance photocatalytic decomposition of sunset yellow. Food Chem 2023; 425:136470. [PMID: 37269639 DOI: 10.1016/j.foodchem.2023.136470] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
In this study, novel, metal-free, CP-derived CDs/g-C3N4 nanocomposites (CDCNs) were created by introducing citrus peel-derived carbon dots (CP-derived CDs) into graphite carbon nitride (g-C3N4) by a green hydrothermal method. The CDCNs were revealed to have superior photoelectrochemical properties relative to pristine g-C3N4 for the photocatalytic degradation of the food dye sunset yellow (SY) under visible light. For SY decomposition, the recommended catalyst contributed almost 96.3% to the photodegradation rate after 60 min of irradiation, showing satisfactory reusability, structural stability and biocompatibility. Moreover, a mechanism for enhanced photocatalytic SY degradation was proposed according to band analysis, free radical trapping and electron paramagnetic resonance (EPR) results. A possible pathway for SY photodegradation was also predicted from UV-visible (UV-Vis) spectroscopy and high-performance liquid chromatography (HPLC) results. The constructed nonmetallic nanophotocatalysts afford a novel route for the elimination of harmful dyes and for the resource conversion of citrus peels.
Collapse
Affiliation(s)
- Dezhuang Gong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jialiang Guo
- College of Life Sciences, Changchun Normal University, Changchun, Jilin 130032, PR China
| | - Fan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jing Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Shuang Song
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Bingxin Feng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| |
Collapse
|
10
|
Yuan C, Sun F, Liu H, Chen T, Chu Z, Wang H, Zou X, Zhai P, Chen D. Synthesis of CaWO4 as a Photocatalyst for Degradation of Methylene Blue and Carmine under Ultraviolet Light Irradiation. Processes (Basel) 2023. [DOI: 10.3390/pr11041050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Photocatalysis is considered a promising method for wastewater treatment; however, most synthesized photocatalysts have complex structures and are costly. Thus, in this study, a novel CaWO4 sample was synthesized by a co-precipitation method in one step. The characteristic results show that CaWO4 has good dispersibility, a large specific surface area, and good photoresponse under UV light. The synthesized CaWO4 can be used to degrade methylene blue (MB) and carmine (CR) under UV light without the addition of oxidants. The effects of a water matrix, including pH value, solid–liquid ratio, light intensity, and initial concentration of pollutants on photocatalytic degradation were studied. According to the optimization of these factors, the optimal photocatalytic degradation condition was found under the catalyst concentration of 1.0 g/L and ultraviolet light intensity of 80 W. The optimal pH is 8.2 for the MB system and 6.0 for the CR system. The optimal photocatalytic degradation of MB and CR at 100 mg/L can be achieved as 100%. According to the results of scavenger experiments, holes and hydroxyl radicals dominate the degradation of MB while hydroxyl radicals and superoxide anions are mainly responsible for the degradation of CR. Further analyses showed that photogenerated electrons generated on the surface of the CaWO4 can form electron–hole pairs, thereby producing hydroxyl radicals and superoxide anions to degrade dyes. In addition, the CaWO4 has a good cycling performance in the process of degrading MB (more than 80% after five cycles). It provides a new idea for the photocatalytic degradation of dyes using mineral-like materials.
Collapse
|