1
|
Cao S, Fang J, Koch K, Fan X, Al-Hazmi HE, Du R, Wells GF. Fluoride-induced stress shapes partial denitrification granules to sustain microbial metabolism. WATER RESEARCH 2025; 275:123239. [PMID: 39908679 DOI: 10.1016/j.watres.2025.123239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
The presence of fluoride ions (F-) in nitrogen-rich wastewater from photovoltaic and semiconductor industries introduces a significant challenge to biological treatment processes, particularly for the innovative partial denitrification (PD) process, which supplies nitrite for anaerobic ammonium oxidation (Anammox). This study provides the first comprehensive and systematic investigation of the effects of F- stress on the granule-based PD process through batch tests and long-term operation. Results indicate that PD activity remains resilient to F- shock up to 1.5 g/L but is markedly impaired at concentrations of 2.0-3.0 g/L, despite maintaining a nitrate-to-nitrite transformation ratio (NTR) of approximately 80 %. Under long-term F- stress at 0.5 g/L, NTR gradually reduces to 50 %, but subsequently recovers to and maintains at 70 %. The increased secretion of loosely bound extracellular polymeric substances and proteins likely enhances the resistance of PD granules to F- stress, though excessive amounts degrade their settling properties. F--induced microbial community succession shapes a predominance of medium granules (1.0 < d < 2.0 mm of 60.2 %) by enhancing aggregation of smaller granules and disintegration of larger ones. This enhances the mechanical strength and microbial activity of PD granules, aiding in resistance to F- stress to sustain microbial metabolism. Thauera is selectively enriched under long-term F- stress, with upregulated nirBDS genes contributing to the reduced NTR. Additionally, increased electron metabolism activity and a robust antioxidative response help to maintain higher microbial metabolic activity, mitigating F--induced oxidative stress. These findings advance our understanding of the resilience and adaptability of the PD process under F- stress, providing critical insights for optimizing biological wastewater treatment systems in challenging environments.
Collapse
Affiliation(s)
- Shenbin Cao
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China; Chongqing Research Institute of Beijing University of Technology, Chongqing 401121, PR China
| | - Jinxin Fang
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany
| | - Xiaoyan Fan
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Hussein E Al-Hazmi
- Eko-Tech Center and Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, Gdańsk 80-233, Poland; BioCo Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, United States
| |
Collapse
|
2
|
Yan HJ, Cui YW, Chen J, Liang HK, Li ZY. Unraveling microbial community ecology and its effects on function and structure of halophilic aerobic granular sludge under varying salinities. BIORESOURCE TECHNOLOGY 2025; 422:132229. [PMID: 39956518 DOI: 10.1016/j.biortech.2025.132229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Halophilic aerobic granular sludge (HAGS) can effectively treat saline wastewater characterized as high salinity and change of salinity, which was discharged from various industries. The stable microbial community ecology is the key to successful operation of HAGS, while its change and outcome under varying salinities is unexplored. In this study, HAGS systems under different salinities were studied to elucidate microbial community ecology process and its effects on HAGS. The study found that the salinity variation intensified competition interaction of bacteria and fungi due to the niche overlap. The decreased salinity from 40 to 0 g/L resulted in functional bacteria loss and fungal population increase by 94.46 %. The HAGS disintegration was caused by insufficient extracellular polymeric substances, which were secreted by bacteria and fed by fungi. This study is the first to reveal role of microbial community ecology on stability and function of HAGS in response to salinity variation.
Collapse
Affiliation(s)
- Hui-Juan Yan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124 China
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124 China.
| | - Jun Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124 China
| | - Hui-Kai Liang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124 China
| | - Zhen-Ying Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124 China
| |
Collapse
|
3
|
Zhu W, Chen F, Ye L, Wang X, Tang Y, Li Y, Song Y. Pyrrhotite promote aerobic granular sludge formation in dye wastewater: pH, interfacial free energy, and microbial community evolution. BIORESOURCE TECHNOLOGY 2025; 419:131922. [PMID: 39709134 DOI: 10.1016/j.biortech.2024.131922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024]
Abstract
This study introduces a technique utilizing natural pyrrhotite powder as a nucleating agent in four sequencing batch reactors (SBRs) for the treatment of dye wastewater. Through analysis of various factors including pH, pyrrhotite surface free energy, sludge zeta potential, and shifts in microbial communities, the mechanism by which pyrrhotite facilitates the formation of aerobic granular sludge (AGS) is elucidated. Over 140 days of continuous operation under neutral conditions, natural pyrrhotite rapidly cultivated AGS under neutral conditions. The structure of the sludge was compact and the settling properties were satisfactory (SVI30/SVI5 close to 1). Reductions in both sludge zeta potential and interfacial free energy of pyrrhotite correlated with increased hydrophobicity of AGS, leading to enhanced sludge aggregation. Changes in pH, sludge interfacial free energy, and zeta potential were found to influence the microbial community composition and diversity within the sludge.This study provides a novel approach for dye wastewater treatment.
Collapse
Affiliation(s)
- Wenfang Zhu
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310000, PR China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Hangzhou 310023, PR China.
| | - Fangyuan Chen
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310000, PR China
| | - Lei Ye
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310000, PR China
| | - Xinyue Wang
- Beijing LongTech Environmental Technology Co., Ltd., Beijing 100072, PR China
| | - Yan Tang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310000, PR China
| | - Yongchao Li
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Hangzhou 310023, PR China
| | - Yali Song
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310000, PR China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Hangzhou 310023, PR China
| |
Collapse
|
4
|
Zhou H, Long J, Qin M, Ji X, Wang J, Qian F, Shen Y, Liu W. Successful operation of nitrifying granules at low pH in a continuous-flow reactor: Nitrification performance, granule stability, and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121793. [PMID: 38991342 DOI: 10.1016/j.jenvman.2024.121793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Acidic nitrification, as a novel process for treating wastewater without sufficient alkalinity, has received increasing attention over the years. In this study, a continuous-flow reactor with aerobic granular sludge was successful operated at low pH (<6.5) performing high-rate acidic nitrification. Volumetric ammonium oxidation rate of 0.4-1.2 kg/(m3·d) were achieved with the specific biomass activities of 5.8-13.9 mg N/(gVSS·h). Stable partial nitritation with nitrite accumulation efficiency over 85% could be maintained at pH above 6 with the aid of residual ammonium, whereas the nitrite accumulation disappeared when pH was below 6. Interestingly, the granule morphology significantly improved during the acidic operation. The increased secretion of extracellular polymeric substances (especially polysaccharides) suggested a self-protective behavior of microbes in the aerobic granules against acidic stress. 16S rRNA gene sequencing analyses indicated that Candidatus Nitrospira defluvii was always the dominant nitrite-oxidizing bacteria, while the dominant ammonia-oxidizing bacteria shifted from Nitrosomonas europaea to Nitrosomonas mobilis. This study, for the first time, demonstrated the improved stability of aerobic granules under acidic conditions, and also highlighted aerobic granules as a useful solution to achieve high-rate acidic nitrification.
Collapse
Affiliation(s)
- Han Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jing Long
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Manyu Qin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianfang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Feiyue Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yaoliang Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
5
|
Yan Z, Han X, Wang H, Jin Y, Song X. Influence of aeration modes and DO on simultaneous nitrification and denitrification in treatment of hypersaline high-strength nitrogen wastewater using sequencing batch biofilm reactor (SBBR). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121075. [PMID: 38723502 DOI: 10.1016/j.jenvman.2024.121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Sequencing batch biofilm reactor (SBBR) has the potential to treat hypersaline high-strength nitrogen wastewater by simultaneous nitrification-denitrification (SND). Dissolved oxygen (DO) and aeration modes are major factors affecting pollutant removal. Low DO (0.35-3.5 mg/L) and alternative anoxic/aerobic (A/O) mode are commonly used for municipal wastewater treatment, however, the appropriate DO concentration and operation mode are still unknown under hypersaline environment because of the restricted oxygen transfer in denser extracellular polymeric substances (EPS) barrier and the decreased carbon source consumption during the anoxic phase. Herein, two SBBRs (R1, fully aerobic mode; R2, A/O mode) were used for the treatment of hypersaline high-strength nitrogen wastewater (200 mg/L NH4+-N, COD/N of 3 and 3% salinity). The results showed that the relatively low DO (2 mg/L) could not realize effective nitrification, while high DO (4.5 mg/L) evidently increased nitrification efficiency by enhancing oxygen transfer in denser biofilm that was stimulated by high salinity. A stable SND was reached 16 days faster with a ∼10% increase of TN removal under A/O mode. Mechanism analysis found that denser biofilm with coccus and bacillus were present in A/O mode instead of filamentous microorganisms, with the secretion of more EPS. Corynebacterium and Halomonas were the dominant genera in both SBBRs, and HN-AD process might assist partial nitrification-denitrification (PND) for highly efficient TN removal in biofilm systems. By using the appropriate operation mode and parameters, the average NH4+-N and TN removal efficiency could respectively reach 100% and 70.8% under the NLR of 0.2 kg N·m-3·d-1 (COD/N of 3), which was the highest among the published works using SND-based SBBRs in treatment of saline high-strength ammonia nitrogen (low COD/N) wastewater. This study provided new insights in biofilm under hypersaline stress and provided a solution for the treatment of hypersaline high-strength nitrogen (low COD/N) water.
Collapse
Affiliation(s)
- Zixuan Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Haodi Wang
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yan Jin
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xingfu Song
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
6
|
Yang J, Qian M, Wu S, Liao H, Yu F, Zou J, Li J. Insight into the role of chitosan in rapid recovery and re-stabilization of disintegrated aerobic granular sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120613. [PMID: 38547824 DOI: 10.1016/j.jenvman.2024.120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/16/2024] [Accepted: 03/10/2024] [Indexed: 04/07/2024]
Abstract
The disintegration and instability of aerobic granular sludge (AGS) systems during long-term operation pose significant challenges to its practical implementation, and rapid recovery strategies for disintegrated AGS are gaining more attention. In this study, the recovery and re-stabilization of disintegrated AGS was investigated by adding chitosan to a sequencing batch reactor and simultaneously adjusting the pH to slightly acidic condition. Within 7 days, chitosan addition under slight acidity led to the re-aggregation of disintegrated granules, increasing the average particle size from 166.4 μm to 485.9 μm. Notably, sludge volume indexes at 5 min (SVI5) and 30 min (SVI30) decreased remarkably from 404.6 mL/g and 215.1 mL/g (SVI30/SVI5 = 0.53) to 49.1 mL/g and 47.6 mL/g (SVI30/SVI5 = 0.97), respectively. Subsequent operation for 43 days successfully re-stabilized previous collapsed AGS system, resulting in an average particle size of 750.2 μm. These mature and re-stabilized granules exhibited characteristics of large particle size, excellent settleability, compact structure, and high biomass retention. Furthermore, chitosan facilitated the recovery of COD and nitrogen removal performances within 17-23 days of operation. It effectively facilitated the rapid aggregation of disintegrated granules by charge neutralization and bridging effects under a slightly acidic environment. Moreover, the precipitated chitosan acted as carriers, promoting the adhesion of microorganisms once pH control was discontinued. The results of batch tests and microbial community analysis confirmed that chitosan addition increased sludge retention time, enriching slow-growing microorganisms and enhancing the stability and pollutant removal efficiency of the AGS system.
Collapse
Affiliation(s)
- Jiaqi Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mengjie Qian
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuyun Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hanglei Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fengfan Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jinte Zou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing, 312000, China.
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
7
|
Zhang K, Jiang S, Zhang J, Zheng J, Li P, Wang S, Bi R, Gao L. Phycoremediation and valorization of hypersaline pickled mustard wastewater via Chaetoceros muelleri and indigenous bacteria. BIORESOURCE TECHNOLOGY 2024; 393:130172. [PMID: 38086464 DOI: 10.1016/j.biortech.2023.130172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024]
Abstract
Hypersaline pickled mustard wastewater (PMW), a typical food wastewater with high nutrient content, was successfully bioremediated via the co-treatment of Chaetoceros muelleri and indigenous bacteria in this study. Chemical oxygen demand, ammonia nitrogen, total nitrogen and total phosphorus in 10 % PMW could be effectively reduced by 82 %, 90 %, 94 % and 96 %, respectively, after 12 days treatment. Oxygen species activities, malondialdehyde content, microalgal biomass, photosynthesis and extracellular polymeric substances were characterized during the treatment to determine the responses of the consortium when exposed to different concentration of PMW. Microbial community analysis demonstrated a significant increase in the relative abundance of Halomonas and Marinobacter in the 10 % PMW after 12 days treatment, which was beneficial for nutrients recycling by the diatoms. Meanwhile, C. muelleri was effective in reducing the relative abundance of potentially pathogenic bacteria Malaciobacter. In conclusion, the work here offers a promising and environmentally friendly approach for hypersaline wastewater treatment.
Collapse
Affiliation(s)
- Kai Zhang
- Research Institute of Agricultural Engineering, Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China; Chongqing Key Laboratory of Agricultural Waste Resource Utilization Technology and Equipment Research, Chongqing 401329, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Shuqin Jiang
- Research Institute of Agricultural Engineering, Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China; Chongqing Key Laboratory of Agricultural Waste Resource Utilization Technology and Equipment Research, Chongqing 401329, PR China
| | - Juan Zhang
- Research Institute of Agricultural Engineering, Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China; Chongqing Key Laboratory of Agricultural Waste Resource Utilization Technology and Equipment Research, Chongqing 401329, PR China
| | - Jishu Zheng
- Research Institute of Agricultural Engineering, Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China; Chongqing Key Laboratory of Agricultural Waste Resource Utilization Technology and Equipment Research, Chongqing 401329, PR China
| | - Ping Li
- Research Institute of Agricultural Engineering, Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China; Chongqing Key Laboratory of Agricultural Waste Resource Utilization Technology and Equipment Research, Chongqing 401329, PR China
| | - Song Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518061, PR China.
| | - Ru Bi
- Research Institute of Agricultural Engineering, Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China; Chongqing Key Laboratory of Agricultural Waste Resource Utilization Technology and Equipment Research, Chongqing 401329, PR China
| | - Lihong Gao
- Research Institute of Agricultural Engineering, Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China; Chongqing Key Laboratory of Agricultural Waste Resource Utilization Technology and Equipment Research, Chongqing 401329, PR China.
| |
Collapse
|
8
|
Han X, Tang R, Liu C, Yue J, Jin Y, Yu J. Rapid, stable, and highly-efficient development of salt-tolerant aerobic granular sludge by inoculating magnetite-assisted mycelial pellets. CHEMOSPHERE 2023; 339:139645. [PMID: 37495046 DOI: 10.1016/j.chemosphere.2023.139645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/30/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Long cultivation time hinders the industrial applications of aerobic granular sludge (AGS) in treatment of hypersaline wastewater. Mycelial pellets (MPs) have been used to efficiently strengthen the flocculent sludge aggregation and accelerate the formation of AGS. However, the MPs-based AGS was easily crushed or fragmented into several small pieces/granules that brought the uncertainty and extended the transition process to form mature AGS. In this study, magnetite was used to strengthen MPs (halotolerant fungus Cladosporium tenuissimum NCSL-XY8), and co-culture and adsorption type of magnetite-assisted mycelial pellets (CMMPs and AMMPs) were prepared and used for acceleration of salt-tolerant aerobic granular sludge (SAGS) cultivation under 3% salinity conditions. Compared to inoculating MPs, the inoculation of either CMMPs or AMMPs could stably transition to mature SAGS without evident fragmentation, which obviously increased the certainty and stability of SAGS formation. Also, highly-efficient simultaneous nitrogen and carbon removal (∼98% TOC and ∼80% TN removal) could be reached in 8 days. Typically, the granules maintained perfect characteristics (D50 > 1300 μm, D10 > 350 μm, SVI30 < 45 mL/g, and SVI30/SVI5 = 1.0) during the whole cultivation/transition processes (Day 0-55) by using the inoculum of CMMPs. ITS rDNA sequencing revealed the inoculated fungus Cladosporium tenuissimum played key roles in the formation of SAGS. All the phenomena indicated the rapid, stable, and highly-efficient start-up of SAGS could be successfully realized by inoculating CMMPs.
Collapse
Affiliation(s)
- Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Rui Tang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Changshen Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingxue Yue
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yan Jin
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jianguo Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
9
|
Yue J, Han X, Jin Y, Yu J. Potential of direct granulation and organic loading rate tolerance of aerobic granular sludge in ultra-hypersaline environment. ENVIRONMENTAL RESEARCH 2023; 228:115831. [PMID: 37024036 DOI: 10.1016/j.envres.2023.115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/27/2023] [Accepted: 04/01/2023] [Indexed: 05/16/2023]
Abstract
Salt-tolerant aerobic granular sludge (SAGS) technology has shown potentials in the treatment of ultra-hypersaline high-strength organic wastewater. However, the long granulation period and salt-tolerance acclimation period are still bottlenecks that hinder SAGS applications. In this study, "one-step" development strategy was used to try to directly cultivate SAGS under 9% salinity, and the fastest cultivation process was obtained under such high salinity compared to the previous papers with the inoculum of municipal activated sludge without bioaugmentation. Briefly, the inoculated municipal activated sludge was almost discharged on Day 1-10, then fungal pellets appeared and it gradually transitioned to mature SAGS (particle size of ∼4156 μm and SVI30 of 57.8 mL/g) from Day 11 to Day 47 without fragmentation. Metagenomic revealed that fungus Fusarium played key roles in the transition process probably because it functioned as structural backbone. RRNPP and AHL-mediated systems might be the main QS regulation systems of bacteria. TOC and NH4+-N removal efficiencies maintained at ∼93.9% (after Day 11) and ∼68.5% (after Day 33), respectively. Subsequently, the influent organic loading rate (OLR) was stepwise increased from 1.8 to 11.7 kg COD/m3·d. It was found that SAGS could maintain intact structure and low SVI30 (< 55 mL/g) under 9% salinity and the OLR of 1.8-9.9 kg COD/m3·d with adjustment of air velocity. TOC and NH4+-N (TN) removal efficiencies could maintain at ∼95.4% (below OLR of 8.1 kg COD/m3·d) and ∼84.1% (below nitrogen loading rate of 0.40 kg N/m3·d) in ultra-hypersaline environment. Halomonas dominated the SAGS under 9% salinity and varied OLR. This study confirmed the feasibility of direct aerobic granulation in ultra-hypersaline environment and verified the upper OLR boundary of SAGS in ultra-hypersaline high-strength organic wastewater treatment.
Collapse
Affiliation(s)
- Jingxue Yue
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yan Jin
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jianguo Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
10
|
Performance and Bacterial Characteristics of Aerobic Granular Sludge in Treatment of Ultra-Hypersaline Mustard Tuber Wastewater. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Mustard tuber wastewater (MTW) is an ultra-hypersaline high-strength acid organic wastewater. Aerobic granular sludge (AGS) has been demonstrated to have high tolerance to high organic loading rate (OLR), high salinity, and broad pH ranges. However, most studies were conducted under single stress, and the performance of AGS under multiple stresses (high salinity, high OLR, and low pH) was still unclear. Herein, mature AGS was used to try to treat the real MTW at 9% salinity, pH of 4.1–6.7, and OLR of 1.8–7.2 kg COD/m3·d. The OLR was increased, and the results showed that the upper OLR boundary of AGS was 5.4 kg COD/m3·d (pH of 4.2) with relatively compact structure and high removal of TOC (~93.1%), NH4+-N (~88.2%), and TP (~50.6%). Under 7.2 kg COD/m3·d (pH of 4.1), most of the AGS was fragmented, primarily due to the multiple stresses. 16S rRNA sequencing indicated that Halomonas dominated the reactor during the whole process with the presence of unclassified-f-Flavobacteriaceae, Aequorivita, Paracoccus, Bradymonas, and Cryomorpha, which played key roles in the removal of TOC, nitrogen, and phosphorus. This study investigated the performance of AGS under multiple stresses, and also brought a new route for highly-efficient simultaneous nitrification–denitrifying phosphorus removal of real MTW.
Collapse
|