1
|
Li B, Hu Z, Zhao Q, Heng J, Wang S, Khanal SK, Guo Z, Zhang J. Enhanced fluoride removal in a novel magnesium-carbon micro-electrolysis constructed wetland through accelerated electron transport and anodic sacrifice. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138062. [PMID: 40157187 DOI: 10.1016/j.jhazmat.2025.138062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
High fluoride (F-) content in the aquatic environment is a significant issue affecting public health. Constructed wetlands (CWs) are believed to have unique potential for alleviating F- pollution in the aquatic environment. In this study, magnesium (Mg) and iron/nitrogen co-doped biochar (FeNBC) was used as the filler of a novel micro-electrolysis constructed wetland (WNME). Compared with the control, WNME significantly enhanced the F- removal efficiency from 19.1 ± 7.3 % to 54.1 ± 8.3 %, in which 90.7 % of total F- removal in WNME was attributed to the micro-electrolysis filler. The enhancement was attributed to the co-doping of iron and nitrogen, which improved the surface morphology, element distribution, and electrochemical performance of FeNBC. This led to an increase in the potential of FeNBC by 9.8 %, thereby increasing the potential difference within the Mg-C micro-electrolysis system. The Mg2+ release from anodic sacrifice in WNME was promoted, which led to an increase in MgF2 as the precipitate. Micro-electrolysis promoted the enrichment of electrochemically active bacteria in WNME, resulting in enhanced electron transfer and high F- removal efficiency. This study provided new insights for F- removal in CWs and would shed light on the optimization of micro-electrolysis CWs for F- removal from the aqueous phase.
Collapse
Affiliation(s)
- Bingrui Li
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Zhen Hu
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Qian Zhao
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Jiayang Heng
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Shuo Wang
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Zizhang Guo
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Jian Zhang
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China; College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| |
Collapse
|
2
|
Guo X, Zhu W, Peng G, Zhang Y, Wang J, Wang Z, Tan L, Zhang S. Current intensity and hydraulic retention time play differential roles in functional gene expression or electron transfer pathways in a pyrite-filled three-dimensional biofilm electrode reactor (P3DBER). ENVIRONMENTAL RESEARCH 2025; 270:121040. [PMID: 39909094 DOI: 10.1016/j.envres.2025.121040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/07/2025]
Abstract
This study developed a pyrite-filled three-dimensional biofilm electrode reactor (P3DBER) to treat nitrate wastewater with a low carbon/nitrogen ratio. Meanwhile, the joint effect of current intensity (CI) and hydraulic retention time (HRT) on the performance of the P3DBER was investigated. Results indicated that under the optimal conditions (CI = 30 mA, HRT = 4.9 h), the total inorganic nitrogen removal efficiency (TINRE) reached a maximum of 93.5 ± 1.4%, with a low electrical consumption of 0.075 kW h/g TIN. Increasing CI under different HRTs significantly enhanced the nitrogen removal capacity of the P3DBER. However, at high CI (30 mA), prolonging HRT did not further improve the nitrogen removal efficiency. The introduction of pyrite not only increased the types of electron donors but also could effectively maintain the stability of pH in the P3DBER. Variation partitioning analysis (VPA) showed that CI had a greater impact on the microbial community/functional genes than HRT. In addition, network analysis demonstrated a strong interconnection among microorganisms/functional genes within the P3DBER. This study offers valuable information for optimizing the operating parameters of the P3DBER.
Collapse
Affiliation(s)
- Xihui Guo
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Wentao Zhu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Gang Peng
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| | - Yan Zhang
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Jing Wang
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China
| | - Lin Tan
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572000, China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
3
|
Zhou Q, Wang J. Sulfur-based mixotrophic denitrification: A promising approach for nitrogen removal from low C/N ratio wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177419. [PMID: 39542261 DOI: 10.1016/j.scitotenv.2024.177419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Sulfur-based mixotrophic denitrification has significant potential as a promising denitrification technology for treating low ratio of carbon-to‑nitrogen (C/N) wastewater. This paper provided an in-depth and comprehensive overview of the sulfur-based mixotrophic denitrification process and discussed the underlying mechanisms and functional microorganisms. Possible electron transfer pathways involved in the sulfur-based mixotrophic denitrification process are also analyzed in detail. This review focused on the various sulfur-based electron donors used in the sulfur-based mixotrophic denitrification process, including S0, S2-, S2O32-, and pyrite (FeS2), and their performances when combined with various carbon sources (such as methanol, ethanol, glucose, and woodchips) were also explored. The analysis of the contribution proportion between autotrophic and heterotrophic denitrification suggested an appropriate C/N ratio can emphasize the dominance of autotrophs, thus exerting synergistic effects and reducing the consumption of carbon sources. Additionally, three strategies, including developing new composites, new bioreactors, and new sulfur sources, were proposed to improve the performance and stability of the sulfur-based mixotrophic denitrification process. Finally, the applications (such as secondary effluent, groundwater, and agricultural/urban storm water runoff), challenges, and perspectives of the sulfur-based mixotrophic denitrification were highlighted. This review provided an in-depth insight into the coupling mechanism of sulfur-based autotrophic and heterotrophic denitrification and guidance for the future implementation of the sulfur-based mixotrophic denitrification process.
Collapse
Affiliation(s)
- Qi Zhou
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory for Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
4
|
Li D, Li J, Zhu Y, Wu Y, Du L, Wu Y, Li J, Guo W. Responses of SNEDPR-AGS system under long-term exposure of polyethylene terephthalate microplastics for treating low C/N wastewater: Granular effect and microbial structure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136299. [PMID: 39467437 DOI: 10.1016/j.jhazmat.2024.136299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024]
Abstract
The removal of nutrients in sewage treatment plants can be significantly impacted by carbon limitations, especially for treating low carbon to nitrogen ratio (C/N) wastewater, which can markedly increase operational costs. Simultaneous nitrification, endogenous denitrification, and phosphorus removal combined with aerobic granular sludge (SNEDPR-AGS) has emerged as one of the optimal processes for treating low C/N wastewater owing to its high carbon utilization efficiency; however, the long-term effect of microplastics (MPs) on this system remains unclear. This study investigated the granular effect and microbial response of an SNEDPR-AGS system for treating low C/N wastewater under long-term exposure (180 d) to polyethylene terephthalate microplastics (PET-MPs). The results showed that the integrity of the AGS structure was disrupted significantly as the PET-MP concentration increased, with clear AGS cracks appearing on days 180, 124, and 74 after exposure to 1, 10, and 100 mg/L of PET-MPs, respectively. Additionally, the addition of PET-MPs also inhibited denitrification and phosphorus removal due to a decrease in the relative abundance of functional genes (napAB, nirK/nirS, ppk1, ppk2, and ppx). Notably, both chemometric and high-throughput sequencing results indicated that the metabolic form of the system would shift from a polyphosphate-accumulating metabolism to a glycogen-accumulating metabolism. The reason may be that PET-MP stress inhibited the relative abundance of functional genes related to carbon, glycogen, phosphorus, and energy metabolism pathways in Candidatus Accumulibacter and Dechloromonas, but promoted their relative abundance of Candidatus Competibacter. Flow cytometry and molecular docking simulations have also demonstrated the direct toxic effects of PET-MPs on the SNEDPR-AGS system. The biological enhancement and functional recovery of damaged SNEDPR-AGS systems must be further investigated in future studies.
Collapse
Affiliation(s)
- Dongyue Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jiarui Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yuhan Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yaodong Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Linzhu Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yanshuo Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Wei Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
5
|
Yang W, Xin X, Liu S. Performances of a novel BAF with ferromanganese oxide modified biochar (FMBC) as the carriers for treating antibiotics, nitrogen and phosphorus in aquaculture wastewater. Bioprocess Biosyst Eng 2024; 47:1849-1862. [PMID: 39133297 DOI: 10.1007/s00449-024-03073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
In this paper, a biological aerated filter (BAF) based on ferromanganese oxide-biochar (FMBC) was constructed to investigated the removal performance and mechanism for conventional pollutants and four kinds of antibiotic, in contrast of conventional zeolite loaded BAF (BAF-A) and bamboo biochar filled BAF (BAF-B). Results showed that the average removal efficiency of total nitrogen (TN), total phosphorus (TP) and antibiotics in a FMBC-BAF (named by BAF-C) were 52.97 ± 2.27%, 51.58 ± 1.92% and 70.36 ± 1.00% ~ 81.65 ± 0.99% respectively in running period (39-100 d), which were significantly higher than those of BAF-A and BAF-B. In the BAF-C, the expression of denitrification enzyme activities and the secretion of extracellular polymeric substance (EPS) especially polyprotein (PN) were effectively stimulated, as well as accelerated electron transfer activity (ETSA) and lower electrochemical impedance spectroscopy (EIS) were acquired. After 100 days of operation, the abundance of nitrogen, phosphorus and antibiotic removal functional bacteria like Sphingorhabdus (4.52%), Bradyrhizobium (1.98%), Hyphomicrobium (2.49%), Ferruginibacter (7.80%), unclassified_f_Blastoca tellaceae (1.84%), norank_f_JG30-KF-CM45 (6.82%), norank_f_norank_o_SBR1031 (2.43%), Nitrospira (2.58%) norank_f_Caldilineaceae (1.53%) and Micropruina (1.11%) were enriched. Mechanism hypothesis of enhanced performances of nutrients and antibiotics removal pointed that: The phosphorus was removed by adsorption and precipitation, antibiotics removal was mainly achieved through the combined action of adsorption and biodegradation, while nitrogen removal was realized by biologic nitrification and denitrification in a FMBC-BAF for aquaculture wastewater treatment.
Collapse
Affiliation(s)
- Wenyu Yang
- School of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Xin Xin
- School of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China.
| | - Siqiang Liu
- School of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| |
Collapse
|
6
|
Hu H, Bai Y, Zhou C, Jia W, Lens PNL, Hu Z, Caffrey D, Zhan X. Nitrate Chemodenitrification by Iron Sulfides to Ammonium under Mild Conditions and Transformation Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9804-9814. [PMID: 38771927 PMCID: PMC11154956 DOI: 10.1021/acs.est.4c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
Autotrophic denitrification utilizing iron sulfides as electron donors has been well studied, but the occurrence and mechanism of abiotic nitrate (NO3-) chemodenitrification by iron sulfides have not yet been thoroughly investigated. In this study, NO3- chemodenitrification by three types of iron sulfides (FeS, FeS2, and pyrrhotite) at pH 6.37 and ambient temperature of 30 °C was investigated. FeS chemically reduced NO3- to ammonium (NH4+), with a high reduction efficiency of 97.5% and NH4+ formation selectivity of 82.6%, but FeS2 and pyrrhotite did not reduce NO3- abiotically. Electrochemical Tafel characterization confirmed that the electron release rate from FeS was higher than that from FeS2 and pyrrhotite. Quenching experiments and density functional theory calculations further elucidated the heterogeneous chemodenitrification mechanism of NO3- by FeS. Fe(II) on the FeS surface was the primary site for NO3- reduction. FeS possessing sulfur vacancies can selectively adsorb oxygen atoms from NO3- and water molecules and promote water dissociation to form adsorbed hydrogen, thereby forming NH4+. Collectively, these findings suggest that the NO3- chemodenitrification by iron sulfides cannot be ignored, which has great implications for the nitrogen, sulfur, and iron cycles in soil and water ecosystems.
Collapse
Affiliation(s)
- Huanhuan Hu
- Civil
Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Yang Bai
- Civil
Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Chong−wen Zhou
- Combustion
Chemistry Centre, School of Biological and Chemical Sciences, Ryan
Institute, University of Galway, Galway H91 TK33, Ireland
- School
of Energy and Power Engineering, Beihang
University, Beijing 100191, China
| | - Weihang Jia
- School
of Energy and Power Engineering, Beihang
University, Beijing 100191, China
| | - Piet N. L. Lens
- Department
of Microbiology, University of Galway, Galway H91 TK33, Ireland
| | - Zhenhu Hu
- Department
of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - David Caffrey
- School of
Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Xinmin Zhan
- Civil
Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| |
Collapse
|
7
|
Bao T, Damtie MM, Wang CY, Li CL, Chen Z, Cho K, Wei W, Yuan P, Frost RL, Ni BJ. Iron-containing nanominerals for sustainable phosphate management: A comprehensive review and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172025. [PMID: 38554954 DOI: 10.1016/j.scitotenv.2024.172025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Adsorption, which is a quick and effective method for phosphate management, can effectively address the crisis of phosphorus mineral resources and control eutrophication. Phosphate management systems typically use iron-containing nanominerals (ICNs) with large surface areas and high activity, as well as modified ICNs (mICNs). This paper comprehensively reviews phosphate management by ICNs and mICNs in different water environments. mICNs have a higher affinity for phosphates than ICNs. Phosphate adsorption on ICNs and mICNs occurs through mechanisms such as surface complexation, surface precipitation, electrostatic ligand exchange, and electrostatic attraction. Ionic strength influences phosphate adsorption by changing the surface potential and isoelectric point of ICNs and mICNs. Anions exhibit inhibitory effects on ICNs and mICNs in phosphate adsorption, while cations display a promoting effect. More importantly, high concentrations and molecular weights of natural organic matter can inhibit phosphate adsorption by ICNs and mICNs. Sodium hydroxide has high regeneration capability for ICNs and mICNs. Compared to ICNs with high crystallinity, those with low crystallinity are less likely to desorb. ICNs and mICNs can effectively manage municipal wastewater, eutrophic seawater, and eutrophic lakes. Adsorption of ICNs and mICNs saturated with phosphate can be used as fertilizers in agricultural production. Notably, mICNs and ICNs have positive and negative effects on microorganisms and aquatic organisms in soil. Finally, this study introduces the following: trends and prospects of machine learning-guided mICN design, novel methods for modified ICNs, mICN regeneration, development of mICNs with high adsorption capacity and selectivity for phosphate, investigation of competing ions in different water environments by mICNs, and trends and prospects of in-depth research on the adsorption mechanism of phosphate by weakly crystalline ferrihydrite. This comprehensive review can provide novel insights into the research on high-performance mICNs for phosphate management in the future.
Collapse
Affiliation(s)
- Teng Bao
- School of Biology, Food and Environment Engineering, Hefei University, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Department of Environmental Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea; Nanotechnology and Molecular Science Discipline, Faculty of Science and Engineering, Queensland University of Technology (QUT), 2 George Street, GPO Box 2434, Brisbane, QLD 4000, Australia
| | - Mekdimu Mezemir Damtie
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Water Resources Engineering Department, Adama Science and Technology University, Adama, P.O. Box 1888, Ethiopia
| | - Chu Yan Wang
- School of Biology, Food and Environment Engineering, Hefei University, China
| | - Cheng Long Li
- School of Biology, Food and Environment Engineering, Hefei University, China
| | - Zhijie Chen
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Kuk Cho
- Department of Environmental Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Peng Yuan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ray L Frost
- Nanotechnology and Molecular Science Discipline, Faculty of Science and Engineering, Queensland University of Technology (QUT), 2 George Street, GPO Box 2434, Brisbane, QLD 4000, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
8
|
Lv X, Zhang W, Deng J, Feng S, Zhan H. Pyrite and humus soil-coupled mixotrophic denitrification system for efficient nitrate and phosphate removal. ENVIRONMENTAL RESEARCH 2024; 247:118105. [PMID: 38224940 DOI: 10.1016/j.envres.2024.118105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Affiliation(s)
- Xin Lv
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Wenxi Zhang
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Jiushuai Deng
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China; Engineering Technology Research Center for Comprehensive Utilization of Rare Earth, Rare Metal and Rare-Scattered in Non-ferrous Metal Industry, CUMTB, Beijing, 100083, China; Key Laboratory of Separation and Processing of Symbiotic-Associated Mineral Resources in Non-ferrous Metal Industry, CUMTB, Beijing, 100083, China.
| | - Shengyuan Feng
- Jiangxi Gaiya Environm Sci & Technol Co. Ltd, Shangrao, Jiangxi, 334000, China
| | - Hongzhi Zhan
- Jiangxi Gaiya Environm Sci & Technol Co. Ltd, Shangrao, Jiangxi, 334000, China
| |
Collapse
|
9
|
Shao L, Wang D, Chen G, Zhao X, Fan L. Advance in the sulfur-based electron donor autotrophic denitrification for nitrate nitrogen removal from wastewater. World J Microbiol Biotechnol 2023; 40:7. [PMID: 37938419 DOI: 10.1007/s11274-023-03802-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
In the field of wastewater treatment, nitrate nitrogen (NO3--N) is one of the significant contaminants of concern. Sulfur autotrophic denitrification technology, which uses a variety of sulfur-based electron donors to reduce NO3--N to nitrogen (N2) through sulfur autotrophic denitrification bacteria, has emerged as a novel nitrogen removal technology to replace heterotrophic denitrification in the field of wastewater treatment due to its low cost, environmental friendliness, and high nitrogen removal efficiency. This paper reviews the advance of reduced sulfur compounds (such as elemental sulfur, sulfide, and thiosulfate) and iron sulfides (such as ferrous sulfide, pyrrhotite, and pyrite) electron donors for treating NO3--N in wastewater by sulfur autotrophic denitrification technology, including the dominant bacteria types and the sulfur autotrophic denitrification process based on various electron donors are introduced in detail, and their operating costs, nitrogen removal performance and impacts on the ecological environment are analyzed and compared. Moreover, the engineering applications of sulfur-based electron donor autotrophic denitrification technology were comprehensively summarized. According to the literature review, the focus of future industry research were discussed from several aspects as well, which would provide ideas for the application and optimization of the sulfur autotrophic denitrification process for deep and efficient removal of NO3--N in wastewater.
Collapse
Affiliation(s)
- Lixin Shao
- School of Mechanical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Dexi Wang
- School of Mechanical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Gong Chen
- School of Chemical Equipment, Shenyang University of Technology, Liaoyang, 111000, China
| | - Xibo Zhao
- Weihai Baike Environmental Protection Engineering Co., Ltd., Weihai, 264200, China
| | - Lihua Fan
- School of Chemical Equipment, Shenyang University of Technology, Liaoyang, 111000, China.
| |
Collapse
|